Placeholder Image

字幕列表 影片播放

  • What do Euclid,

    歐幾里得

  • twelve-year-old Einstein,

    12 歲的愛因斯坦

  • and American President James Garfield have in common?

    還有美國總統詹姆斯.加菲爾德的共通點是什麼?

  • They all came up with elegant proofs for the famous Pythagorean theorem,

    他們都為畢氏定理想出巧妙的證明

  • the rule that says for a right triangle,

    畢氏定理指的是一個直角三角形

  • the square of one side plus the square of the other side

    一邊長的平方加上另一邊長的平方

  • is equal to the square of the hypotenuse.

    等於斜邊長的平方

  • In other words, a²+b²=c².

    也就是說,a²+b²=c²

  • This statement is one of the most fundamental rules of geometry,

    這個闡述是幾何中最重要的基本規則之一

  • and the basis for practical applications,

    也是實際應用的基礎

  • like constructing stable buildings and triangulating GPS coordinates.

    像是建造堅固的建物,還有三角測量 GPS 座標

  • The theorem is named for Pythagoras,

    這個定理是以畢達哥拉斯的名字來命名

  • a Greek philosopher and mathematician in the 6th century B.C.,

    一位公元前 6 世紀的希臘哲學家兼數學家

  • but it was known more than a thousand years earlier.

    但畢氏定理早在一千多年前就已為人所知

  • A Babylonian tablet from around 1800 B.C. lists 15 sets of numbers

    公元前 1800 年左右,一個巴比倫泥板列出 15 組數字

  • that satisfy the theorem.

    符合畢氏定理

  • Some historians speculate that Ancient Egyptian surveyors

    一些歷史學家推測古埃及測量員

  • used one such set of numbers, 3, 4, 5, to make square corners.

    使用 3、4、5 這組數字來製作直角

  • The theory is that surveyors could stretch a knotted rope with twelve equal segments

    理論是,測量員拉開一條打了 12 等分繩結的繩索

  • to form a triangle with sides of length 3, 4 and 5.

    來形成一個邊長 3、4、5 的三角形

  • According to the converse of the Pythagorean theorem,

    根據畢氏定理來反推

  • that has to make a right triangle,

    這必定是製作成直角三角形

  • and, therefore, a square corner.

    因此有個直角

  • And the earliest known Indian mathematical texts

    而已知最早的印度數學教科書

  • written between 800 and 600 B.C.

    約在公元前 800 到 600 年之間出版

  • state that a rope stretched across the diagonal of a square

    說明一條橫跨正方形對角的繩索

  • produces a square twice as large as the original one.

    可以產生一個比原本的正方形大兩倍的正方形

  • That relationship can be derived from the Pythagorean theorem.

    這樣的關係可以從畢氏定理推導出來

  • But how do we know that the theorem is true

    但我們如何知道這個定理是正確的

  • for every right triangle on a flat surface,

    在平面上所有的直角三角形都成立

  • not just the ones these mathematicians and surveyors knew about?

    而不只限於那些數學家跟測量員知道的三角形呢?

  • Because we can prove it.

    因為我們可以證明它

  • Proofs use existing mathematical rules and logic

    證明過程要使用現有的數學規則與邏輯

  • to demonstrate that a theorem must hold true all the time.

    來論證一個定理必須始終成立

  • One classic proof often attributed to Pythagoras himself

    一個經常被認為是畢達哥拉斯自己寫的經典證明

  • uses a strategy called proof by rearrangement.

    使用的策略是,重新排列來證明

  • Take four identical right triangles with side lengths a and b

    拿四個完全相同的直角三角形,邊長為 a 跟 b

  • and hypotenuse length c.

    還有斜邊長 c

  • Arrange them so that their hypotenuses form a tilted square.

    將它們排列,使它們的斜邊形成一個傾斜的正方形

  • The area of that square is c².

    這個正方形的面積就是 c²

  • Now rearrange the triangles into two rectangles,

    現在重新排列這些三角形,變成兩個長方形

  • leaving smaller squares on either side.

    在其餘兩邊留下比較小的正方形

  • The areas of those squares areand b².

    這兩個正方形的面積分別是 a² 跟 b²

  • Here's the key.

    重點來了

  • The total area of the figure didn't change,

    這個圖形的總面積沒有改變

  • and the areas of the triangles didn't change.

    三角形的總面積也沒有改變

  • So the empty space in one, c²

    所以左邊正方形的空白面積 c²

  • must be equal to the empty space in the other,

    一定等於另一邊的空白面積

  • a² + b².

    a² + b²

  • Another proof comes from a fellow Greek mathematician Euclid

    另一個證明來自希臘同胞,數學家歐幾里得

  • and was also stumbled upon almost 2,000 years later

    也在大約 2,000 年後

  • by twelve-year-old Einstein.

    被 12 歲的愛因斯坦偶然發現

  • This proof divides one right triangle into two others

    這個證明是將一個直角三角形分割成兩個直角三角形

  • and uses the principle that if the corresponding angles of two triangles are the same,

    並應用這個原則,如果這兩個三角形的對應角度相同

  • the ratio of their sides is the same, too.

    它們邊長的比例也會相同

  • So for these three similar triangles,

    所以這三個相似三角形

  • you can write these expressions for their sides.

    可以寫出這樣的式子來表示它們的邊長關係

  • Next, rearrange the terms.

    下一步,重新排列算式的形式

  • And finally, add the two equations together and simplify to get

    最後,將兩個算式加起來,簡化後會得到

  • ab²+ac²=bc²,

    ab²+ac²=bc²

  • or a²+b²=c².

    或是 a²+b²=c²

  • Here's one that uses tessellation,

    這個證明用到平面填充

  • a repeating geometric pattern for a more visual proof.

    重複幾何圖形以得到視覺證明

  • Can you see how it works?

    你能看出它如何證明嗎?

  • Pause the video if you'd like some time to think about it.

    如果你需要時間想想,按下暫停吧

  • Here's the answer.

    要公布答案了

  • The dark gray square is

    深灰色的正方形是 a²

  • and the light gray one is b².

    淺灰色的是 b²

  • The one outlined in blue is c².

    藍色框線的是 c²

  • Each blue outlined square contains the pieces of exactly one dark

    每一個藍色框線的正方形裡剛好包含一個深灰色正方形的碎片

  • and one light gray square,

    跟一個淺灰色正方形的碎片

  • proving the Pythagorean theorem again.

    再次證明畢氏定理

  • And if you'd really like to convince yourself,

    如果你真的想說服你自己

  • you could build a turntable with three square boxes of equal depth

    你可以做一個轉盤,還有三個相同深度的正方形容器

  • connected to each other around a right triangle.

    容器相互連結,形成一個直角三角形

  • If you fill the largest square with water and spin the turntable,

    如果你把最大的正方形容器注滿水,然後轉動轉盤

  • the water from the large square will perfectly fill the two smaller ones.

    最大的正方形容器裡的水會剛好填滿另外兩個小正方形的容器

  • The Pythagorean theorem has more than 350 proofs, and counting,

    畢氏定理的證明方法有超過 350 種,還在持續增加

  • ranging from brilliant to obscure.

    從精采絕倫到晦澀難懂的都有

  • Can you add your own to the mix?

    你有辦法想出一種證明加入它們嗎?

  • Did you enjoy this lesson?

    喜歡這個課程嗎?

  • If so, please consider supporting our non-profit mission by visiting PATREON.COM/TEDED

    喜歡的話,請前往 PATREON.COM/TEDED 支持我們的非營利使命

What do Euclid,

歐幾里得

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋