字幕列表 影片播放 列印所有字幕 列印翻譯字幕 列印英文字幕 Babe Ruth, a legend of Major League Baseball 貝比.魯斯 美國職棒的傳奇人物 He led the league in home runs during a season 12 times 曾經奪得12次全壘打王的頭銜 and made a record of 60 home runs in 1927 season 並且在1927年創下單季60支全壘打的紀錄 as well as 714 home runs of his life time record 在其職業生涯總共累積了714支全壘打 In the dead-ball era 在那個被稱為「死球時代」的時期 Ruth's home run and slugging percentage dominated the league 貝比.魯斯的長打能力遠遠的超越同時代的打擊者 He creates an unchallengeable position in the heart of baseball fans 於是 他在球迷的心中建立了不可挑戰的神格地位 and was respectfully named "Baseball Demigod" 被尊稱為「棒球之神」 Roger Maris, an outfielder of New York Yankee 羅傑.馬里斯 洋基隊的外野手 who challenged Ruth's record after 34 years- 在30多年後挑戰貝比.魯斯的紀錄 - 60 home runs in a season 單季60支全壘打 With his home run number getting close to 60 然而 眼看著馬里斯的全壘打數字步步逼近 however, there was no joy for fans 球迷的心中並沒有喜悅 because there can be only one hero in their heart 因為英雄只能有一個 Roger, up here 嗨 羅傑 看上面 Hey it's the voice from above 這是來自天堂的聲音 哈哈哈... Hey Maris up here 嘿 馬里斯 看上面 it's the Babe 貝比.魯斯在此 Hey you wnat my record? you want my record? 你想破我的紀錄嗎? 想破嗎? Catch this you ape piece of shit 垃圾來了給我接好 猿猴 Stop 暫停 In the game 154 in 1961 1961年 洋基第154場比賽 Maris hit number 59 in the 3rd inning 馬里斯在第三局擊出了第59號全壘打 Two outs, in the top of 9th 九局上半 兩出局 and it's the last chance for Maris 馬里斯最後一次打擊機會 Orioles was behind but made an unusual substitution 為了防止他追平紀錄 The closer Hoyt Wilhelm was called on to stop him tying Ruth's record 金鶯隊在落後的情況下做出不尋常的調度 I hate that knuckleball 王牌投手 霍依.威漢登板救援 In this weather it's gonna be dancin' all over the place 我痛恨蝴蝶球 Even if he gets wood on it it's not goin' anywhere 今天的風會讓蝴蝶球亂飄 Bushlinger 就算能碰到球 球也飛不到哪去 Wilhelm takes the sign 小人 but we all know what's coming 威漢收到暗號 Does Roger Maris have one last home rum in him 但大家都知道會配什麼球 he fouled it back 羅傑能從他手中擊出最後一支全壘打嗎 Roger had a good cut on that ball, but it's dancin' all over the place 打成後方界外 Wilhelm's got it 那一球的揮擊角度很好 問題是球四處亂竄 Out 威漢接到球 The knuckleball dominated the hitter and Maris failed to tie the record on that day 出局 Knuckleball is a very special pitch in baseball games 受到蝴蝶球的壓制 馬里斯只能鎩羽而歸 It may suddenly change in direction during its flight 在棒球的世界中 蝴蝶球是一種極為特殊的球路 and dance all over the place with erratic movement 它能夠忽左忽右 或者突然的下墜 so that it can fool the batter 以幾乎不太規則的方式運動 In the following we will investigate knuckleball 也就是這樣能夠愚弄打擊者 base on aerodynamics 接下來 我們將從空氣動力學的角度出發 Furthermore, we will then introduce various pitches of baseball 了解蝴蝶球的原理 When it comes to aerodynamics, most people are familiar with Bernoulli's principle 並且進一步的 介紹並分析其他各種變化球球路 But, to establish enough background knowledge 講到流體力學 一般人最熟知的就是柏努力定律 we need to learn more about the fluid theories 但是在柏努力定律之外 besides the Bernoulli's principle 還有其他重要的流體理論需要了解與認識 First let's talk about boundary layer theory 以便具備足夠的基礎知識 When a fluid flows over a obstacle, they would interact with each other 我們先來談邊界層理論 Let's look into a simplest case 當流體流過障礙物時 會與障礙物發生交互作用 When a fluid passing through a flat plate with velocity V 我們先來研究最簡單的情況 it causes friction on the surface 當流體以速度V流過一個平板 In general, fluids are viscous 流體會跟物體表面發生摩擦 so the flow speeds decrease gradually when it get close to the surface 因為流體一般都是有黏滯性的 and end up at zero 所以越往平板表面靠近 流速會越來越慢 The region where flow speeds gradually decrease 直到趨近於零 is called the "Boundary layer" 這個流速逐步遞減的範圍 Viscosity dominate physical phenomenon in this thin layer 稱之為「邊界層」 and the Bernoulli's principle does not apply in this region 在這個薄層內 黏滯力主導物理現象 However, viscosity has no effect on the region outside the boundary layer 有黏滯力的區域就不適用柏努力定律 where the fluid behaves like a inviscid ideal fluid 然而 在邊界層外面 such that the Bernoulli's principle applies 黏滯力沒有發揮什麼作用 We will back to Bernoulli's principle soon 流體的行為接近於無黏滯性的理想流體 Now pay attention to the phenomenon inside the boundary layer 所以可以使用柏努力定律加以描述 If the flow velocity V is not large 我們稍後會再回來談柏努力定律 The airflow inside the boundary layer is stable 現在先讓我們來關注邊界層內的現象 and the streamlines look like a Mille Crepe 當流速V不大的情況下 This is named a "Laminar boundary layer" 邊界層內的氣流是穩定的 The geometric shape of obstacles have effects on boundary layer 流體的流線就像千層派一樣 For example, when substitute the plate by a sphere 這樣的邊界層稱之為「層流邊界層」 a new physical phenomenon may occur 障礙物的幾何形狀會影響邊界層 Streamlines are drew around the sphere 例如說從平板變成球體的時候 and the green part represents a boundary layer 會有新的物理現象發生 which is a important region 我們把球體周圍的流線畫出來 Let's study the region outside boundary layer first 綠色的部位代表邊界層 where the Bernoulli's principle applies 它是重要的區域 Observe the motion of a small volume element 我們先來探討邊界層外面的區域 Since the speed of a baseball is much lower than sound speed 那是可以運用柏努力定律的地方 the compression effect can be ignore 觀察一小塊體積單元的運動 and the volume of this small element keeps unchanged 因為棒球運動遠低於音速 Imagine it moves in a tube that continuously changes in diameter 不必考慮壓縮效應 When it moves toward A 這一塊小體積在運動過程中保持體積不變 its speed decreases 而且可以把它想像成是在口徑不斷變化的管子中移動 A is called the "stagnation point" 當它靠近A點時 around which the fluid separates to both sides 速度逐漸變慢 The speed increases from A to B A點又叫做「停滯點」 and reach the highest value at B 流體會從停滯點開始往兩側分離 After passing through B the speed decreases 當它離開A點後速度逐漸增加 and reach the minimum speed when it arrive at C 到達B點時速度最高 Bernoulli's principle states that 然後通過B點之後又逐漸減速 high speed corresponds to low pressure 到達C點時流速又降到最低 and low speed corresponds to high pressure 柏努力定律是說 Therefore, the pressure maximums occurs at A and C 高流速的地方壓力小 and B has the minimum pressure 低流速的地方壓力大 Interesting thing occurs in the downstream region 所以 The pressure gradually increases from B to C A跟C點的壓力最大 Outside the boundary layer, when the external pressure variation is large enough B點壓力最小 it can force the downstream boundary layer to move in opposite direction 有趣的地方是發生在下游的區域 Once the inverse flow occurs 從B到C壓力是逐漸變大的 upstream boundary layer can be pushed away from the surface 邊界層在這樣的外部壓力變化下 This phenomenon is called "Boundary layer separation" 如果這個壓力差足夠大的話 The location of "Separation point" is near B 會發生邊界層往上游逆流的現象 and the flow is very unstable behind the separation point 一旦發生逆流 Round and round 上游的邊界層就會被推擠離開球體表面 When various scales of vortices emerge, it is called "Turbulence" 這種現象叫做「邊界層分離」 The tail-like turbulent region behind a obstacle is also named a "Wake" 「分離點」大約會發生在B點附近 Since the separation points occur close to B and D 在分離點之後的流體非常的不穩定 the wake width is comparable to the diameter of the sphere 會不停打轉 As a whole, wake is a low pressure region 然後生出各種大大小小的渦流 and this is the main reason for air resistance 這種情況稱之為「亂流」 However, the location of separation points 因為它是出現在障礙物的後方 are sensitive to the geometric shape of obstacles 所以這整個亂流區域還有個特別的名子 For a streamlined body 叫做「尾流」 the separation occur near its tail 因為分離點就發生在B跟D點附近 The smaller the wake width 所以尾流的寬度大致就和球體的寬度差不多 the smaller the drag 整體來說 This is the reason why airfoils and solar cars 尾流是一個低壓區域 are designed to be streamlined form 這是造成空氣阻力的主要原因 Besides the geometric shape of obstacles 然而分離點發生的位置 the surface roughness also determines the location of separation points 很容易因為障礙物的外形而變化 Take a look at this interesting experiment 像是流線形的物體 The left photo represents a smooth sphere in wind tunnel 分離點會發生在尾端附近 and the separation points are close to the largest cross section of the sphere 尾流變小了 The right photo shows that with a thin trip wire in the upstream 阻力也就大為縮減 the separation points move backward and the wake shrinks 這就是為什麼機翼 What's going on here? 以及太陽能車要設計成流線型的原因 Why a small raised surface leads to this result? 除了障礙物的外形 The reason is that the state of boundary layer has been changed 另一個決定分離點的因素是障礙物表面的粗糙程度 It is originally a laminar flow in the upstream boundary layer 先來看一組有趣的實驗 however, since the raised surface creats small scale vortices 左邊的圖是光滑球體的實驗 the boundary layer becomes turbulent 分離點大約發生在球體最大截面積的地方 This is called a "Turbulent boundary layer" 右圖是在上游的地方加上一圈細線 Fluid flows faster outside the boundary layer because no viscous effect there 結果分離點向後退 A turbulent boundary layer is stirred by vortices 尾流變小了 which makes it mixed with the outer and faster fluid 這是怎麼回事呢? Therefore, the average velocities of boundary layer increases 為什麼球面上的微小凸起會產生這樣的變化? and get more momentum toward downstream 原因就在於邊界層的狀態改變了 So that the separation points retreat and the wake shrinks 原本應該是穩定的「層流邊界層」 The purpose of dimple design on a golf ball 因為球面上的凸起部分製造出小尺度的渦流 is to create a turbulent boundary layer and reduce the drag 使得邊界層演變成亂流的狀態 Baseballs are not smooth spheres, too 這稱之為「亂流邊界層」 The seam lines on the surface of a balseball can disturb boundary layer 我們知道邊界層外面的流體不受黏滯力的影響 In general, baseball seams can cause the retreat of separation points 所以有較大的流速 Baseball seams are not uniformly distributed on the surface 亂流邊界層因為受到渦流的攪動 and this could result in the wake deflection 使得它與周圍較快的流體發生混合 Moreover, the rotations of a baseball are classified into two types 這樣一來 One is four-seamer: There are 4 seams passing by in one full rotation 邊界層的平均速度變快了 The other one is two-seamer: There are 2 seams passing by in one full rotation 有更大的動量往下游衝擊過去 The changes in attack angle results in non-symmetric force 如此便造成分離點向後退 which can be measured by wind tunnel experiments 尾流也跟著縮小了 This figure shows the force versus attack angle 高爾夫球在表面上設計了很多的小凹洞 for a four-seamer at zero rotation speed 目的也是為了製造出亂流邊界層 As you can see, the force has four periods of variation in one full rotation 以達到減少阻力的目的 The detail explanations for that figure are given in the following computer graphics 然而 The air flows in steadily from the left 棒球也不是光滑球體 In the beginning the attack angle is zero 表面有約一公釐高的縫線會干擾邊界層 and the seams are symmetrically distributed 通常的情況 therefore, the wake is right behind the ball without being deflected 棒球的縫線也會導致分離點的位置延後 But the wake deflects dramatically when the attack angle changes 縫線在棒球表面的分布是不均勻的 The largest upward deflection occurs when the attack angle is about 22 degree 這會使得尾流發生偏折的現象 What is the reason for wake deflection ? 然而 The air in upstream boundary layer becomes turbulent after passing by the seams 棒球的旋轉又可以分為兩種方式 Notice the seam in the lower half part is more close to the stagnation point 一種是旋轉一圈的時候 and the lower half turbulent boundary leads the upper one 有四條縫線劃過 With longer path and more chance for mixing 稱之為「四縫線球」 the boundary layer gets more velocity and momentum moving downward 另一種是旋轉一圈 so the lower half part separation point retreats more 有兩條縫線劃過 On the contrary 稱之為「二縫線球」 the upper half part separation point is in advance and the average velocity is lower 攻角的變化會使棒球受到不對稱的作用力 After mixing of these two sides of boundary layer flow in the wake 這可以藉由風洞實驗加以測量 the average velocity deviates upward 這張圖是代表四縫線球 and this is the explanation for wake deflection 在轉速等於零時 To realize how the force acting on the ball 各種角度所產生的作用力 one can regard the complex interaction processes as a black box 可以看到棒球自轉一周 The horizontal air flow deflects upward after passing through the black box 作用力重覆變化四個週期 implies that a upward force acting on the air flow 我們現在運用電腦動畫 Simultaneously, there must be a reaction force in the black box exert on the ball 更詳細的來說明這個實驗結果 which is equal in magnitude and opposite in direction 空氣固定的由左邊流進來 as specified by Newton's third law 一開始角度等於零的時候 This is the result of non-symmetric seam distribution 縫線在兩側的分布是對稱的 Keep on varying the attack angle 所以尾流沒有偏折 the force vanishes at about 45 degree 位於球的正後方 beyond which the wake deflects to another side 一旦改變球的攻角 and the force reachs its maximum at about 68 degree 尾流很快的就發生偏折 Then the force vanishs again at 90 degree 在大約22度附近向上偏折最大 that it has goes through a period 要如何解釋偏折的原因呢? As a result, there are 4 periods in a full rotation of 360 degree 上游的邊界層氣流在經過縫線之後 In the case of two-seam rotation for a knuckleball 會變成亂流邊界層 there are two main periods of force variation 請注意下半邊的縫線比上半邊更接近停滯點 The maximum force is equivalent to 2/3 of baseball weight 也就是下半邊的亂流邊界層提早發生 and the period is two times larger than the case of four-seam rotation 走過更長的路徑 Define the coordinate system first before follow-up discussions 有更多的機會發生混合 Use the rectangular coordinate system 因此邊界層得到更大的速度與動量向下游流去 and let X axis pointing toward home plate 下半邊的分離點就延後了 Y axis pointing toward first base 相反的 Let XY plane be parallel to the ground 上半邊的分離點較早 so Z axis stands vertically 流速也較慢 For this coordinate system 兩側的邊界層氣流在尾流中混合後 The lift force is in the positive Z direction 平均速度偏向上方 the gravity is in the negative Z direction 這就是尾流發生偏折的原因 the lateral force is in the positive/negative Y direction 要理解棒球所受到的作用力 and the drag force is in the negative X direction 我們可以把中間複雜的交互作用過程當成黑盒子看待 Now consider the rotation axis of a knuckleball is perpendicular to the ground 原本水平流進來的空氣 Observe the trajectory from top view 經過黑盒子後向上偏折 and assume the ball spins half a rotation during the flight 這表示空氣受到向上的作用力 The wind tunnel experiment implies that 從牛頓第三運動定律可以知道 there are two periods of left and right motion for a four-seam knuckleball 在這個黑盒子中 In the case of two-seam rotation 一定有大小相等 the knuckleball trajectory has one period of variation 方向相反的反作用力 In practice 作用在棒球上 a pitcher would try to throw the ball as no spin as possible 這就是縫線的不對稱分布所造成的結果 The way is to push the ball with fingertip 繼續改變攻角 but it makes the ball hard to be controlled 到達45度時作用力回復為零 Since the spin axis may not be fixed in some specific direction 再來尾流會向另一側偏折 and since the force is sensitive to attack angle 到68度時作用力最大 the knuckleball trajectory becomes hard to be predicted 90度時又回復為零 This is a demonstration of knuckleball's movement 這樣子就走完一個週期 by Tim Wakefield in a Japan TV show 所以轉一圈360度作用力就有四個週期的變化 From the research of knuckleball we learn that at extremely low spin rate 若是改成以二縫線的方式旋轉 the seam locations or say attack angle 實驗結果發現自轉一周有兩個大的週期變化 determines the force on the baseball 作用力的最大值相當於棒球重量的2/3 In baseball games, however 週期比四縫線大一倍 other kinds of pitches have spin rate over 10 times higher than knuckleball 我們先把座標系定義好以方便之後的討論 and a new physical effect of force enters in- 使用直角座標系 - the "Magnus force" X方向指向本壘板 To get rid of the disturbance by seams Y方向指向一壘側 let's begin with a smooth sphere 並且令XY平面與地面平行 When it start to spin Z軸垂直於地表 The B-side surface and the ambient air move in the same direction 這樣定義的座標系 while C-side moves reversely 升力剛好在正Z方向 Since the fluid inside boundary layer is governed by viscosity 重力則在負Z方向 the B-side boundary layer flows faster than that of C-side toward downstream 側向力在正負Y方向 and carries more momentum 阻力在負X方向 Therefore, the B-side separation point becomes relative backward 我們先假設蝴蝶球的自轉軸垂直於地表 so the wake deflects downward after mixing of these two sides of air 從俯視圖觀察 and the transverse force arises 假設飛行過程中球自轉了半圈 This is called the "Magnus effect" 根據前面風洞實驗的結果來推斷 that resulted from the rotation of moving object in the fluid 四縫線的蝴蝶球會有兩個週期的左右搖擺 The magnitude of Magnus force is probably proportional to 改成二縫線旋轉的話 the air flow speed V and the angular frequency ω of the ball 蝴蝶球的軌跡會有一個週期的變化 So the empirical formula for Magnus force is given by 在實際應用上 1/2 times "Magnus coefficient CM" 投手必須要盡可能的壓抑球的轉動 "air density ρ" 所以投球時要利用指尖把球向前推出 "baseball cross-sectional area A" 這樣的投法是相當難以控制的 "radius R" 自轉軸不一定會固定在特定方向 "angular frequency ω" and the "flow speed V" 再加上作用力的變化對於攻角相當敏感 The Magnus coefficient is a dimensionless quantity 這使得蝴蝶球的軌跡非常難以捉摸 and is the only one parameter to be determined from experiments 在一次的練習當中 Rotation is the motion characterize with direction 紅襪隊的威克菲爾為觀眾展示了蝴蝶球的漂移能力 and can be well described by a "Vector" 從蝴蝶球的研究我們已經了解到 For example, a spin vector S 在極低轉速下 Point your right-hand thumb in the direction of the arrow 縫線的位置 and the grip of the other four fingers represents gyration of the object 或者說攻角 In addition 完全決定棒球的受力情形 the length of the arrow is used to represent the spin rate 但是在棒球運動中 Therefore, a vector can give a complete description of rotation 其他種類的球路都比蝴蝶球自轉快10倍以上 Now we can utilize the right-hand rule 在高速自轉的情況下還要考慮新的物理效應 to determine the direction of Magnus force 那就是「馬格納斯力」 Point your four fingers toward the direction of ball flight 為了要排除縫線的干擾 and align the thumb with spin vector S 我們以光滑的球體來說明 then you got your palm faces the direction of Magnus force 當球體開始自轉的時候 We've learned the Magnus effect by a spinning smooth ball B側的表面跟周圍空氣的運動是順向的 What about a spinning ball with seams? C側剛好是反向 The wake becomes fluttering 我們知道邊界層內的流體受到黏滯力控制 The spin of the ball as well as the surface seams result in joint effect 所以B側的邊界層會比C側具有較大的流速往下游流動 and the Magnus force varies periodically 也就是B側的邊界層具有較大的動量 Although the complex behavior of boundary layer has not been well studied 這樣 the average force can still be obtained from experiments B側的分離點自然較為延後 If the spin vector points toward the third base horizontally 兩側的氣體混合後造成尾流向下方偏移 the Magnus force will totally contribute to lift 球體因此受到橫向的作用力 This figure is the measurement results 這種作用力是由轉動所引起的 The horizontal axis represents the spin parameter SP 叫做「馬格納斯效應」 which is defined as the surface speed Rω of a rotating sphere 馬格納斯力的大小 divided by the flow speed V 大致上正比於空氣的流速V The vertical axis represents the lift coefficient CL 還有球體的自轉角頻率ω which is defined by Magnus coefficient times SP 所以馬格納斯力的經驗公式為 The upper curve represents the lift coefficient of 4-seamer 1/2乘以「馬格納斯係數CM」 and the lower one represents the lift coefficient of 2-seamer 「空氣密度ρ」 Taking a 140 km/hr and 20 rev/sec fastball as an example 「棒球截面積A」 The lift coefficient for a 4-seamer is about two times larger than that of a 2-seamer 「半徑R」 The difference between them decreases 「自轉角頻率ω」以及「空氣流速V」 with increasing the spin rate or decreasing the ball speed 馬格納斯係數是一個無因次的量 In this 140kmh and 20rps case: 也是唯一的待定係數 The lift for a 4-seamer is about 60% of the weight 可以從實驗測量得知它的值 while it is about 30% for a 2-seamer 任何物體的轉動是有方向性的 Now the trajectory can be estimated since the lift force is known 所以適合使用「向量」來加以描述 Green and red curves denote the trajectories of 4-seamer and 2-seamer, respectively 譬如說自旋向量S And the dashed line is a straight line 把拇指指向箭頭方向 When the ball arrives at the plate 那麼四指握起來就代表物體迴旋的方向 the 4-seamer drops about 40 cm 更進一步的 while the 2-seamer drops about 70 cm 還可以用箭頭的長短來代表轉速的快慢 and the difference is about 30 cm 所以向量這種東西可以完整的描述一個物體的自轉 If there is no lift force 至於說馬格納斯力的方向 and consider only the gravitational force on the ball 可以利用右手定則來決定 the ball would drop about 1 meter 以四隻指頭指向棒球前進的方向 Another extreme case is a ball with vertical spin axis 拇指指向自旋向量 such that Magnus force acts totally in the direction of lateral force 這樣掌心面對的方向就代表馬格納斯力作用的方向 Consider the same spin rate and ball speed discussed above 我們已經了解光滑球體轉動的馬格納斯效應 A 2-seamer moves about 30 cm to the left or right 那如果把縫線的干擾加進來呢? when it arrive at the plate 尾流的方向開始變得搖擺不定 and the horizontal movement for a 4-seamer is about 60 cm 球體的自轉 The ability of horizontal or vertical motion is called "tail-strength" 與表面的縫線產生綜合的效應 in Taiwan's baseball terminology 使得馬格納斯力變成隨時間變化 Owing to the surface roughness 雖然說 the drag coefficient of a baseball is in between that of a smooth ball and a golf ball 邊界層複雜的行為還沒有被完全的研究透澈 General speaking, people think that 然而 2-seamers have larger drag than 4-seamers 透過實驗的測量 But the experiment data show that difference is not big 還是可以得到平均的作用力 On the contrary 如果球的自旋向量水平 2-seamers have obviously smaller drag for some special conditions 指向三壘的一側 To pitch a 4-seam fastball 這樣馬格納斯力就會貢獻在升力上面 place your index and middle fingertips on the baseball seam 這張圖是實驗測量結果 and place your thumb right beneath the ball 橫軸是自轉參數SP At release point, press the fingers downward 定義為球體表面圓周運動速度Rω and get the ball backspin like this 除以流速V The spin axis of a 4-seam fast ball is in general oblique 縱軸是升力係數CL which results in the inside movement for a right-handed batter 定義為馬格納斯係數乘以SP 4-seam fastball 上面的曲線代表四縫線球的升力係數 In the pitcher's view angle 下面的是二縫線球的升力係數 Spin vector S pointing toward lower right 以一顆時速140公里 and the right-hand rule tells that 轉速每秒20轉的快速球為例 Magnus force M pointing toward the upper right 四縫線球的升力係數大約是二縫線球的兩倍 As for gravity, Fg pointing downward 增加轉速 The resultant force is obtained by making a parallelogram 或者降低球速 To pitch a cutter 兩者的差距會明顯的縮小 place the index and middle fingers a little bit outside 跟棒球的重量相比 and press the fingers downward at release point 這個四縫線球的升力相當於棒球重量的60%左右 and get the ball spin like this 而二縫線球則約為30% Cutter (Pitcher's view angle) 知道升力的大小就可以估算運動軌跡 To pitch a 2-seam fastball 綠線與紅線分別代表四縫線與二縫線快速球的運動軌跡 place the index and middle fingertips on the narrow part of the seams 虛線是一條直線 and place the thumb right beneath the ball 當球底達本壘板 then it will rotate as a 2-seamer after delivery 四縫線球大約會掉落40公分左右 2-seam fastball (Pitcher's view angle) 而二縫線球大約掉落70公分左右 If push off the index finger at release point and let the ball side spin 兩者差距約30公分 the ball will get more lateral movement and sinking 若是完全不考慮升力 and it becomes a "sinker" 在只受重力作用的情況下 2-seam sinker (Pitcher's view angle) 棒球會下落接近1公尺的程度 To pitch a slider 另一種極端是 place the index and middle fingers outside of the ball 自轉軸垂直地面的情況 and rotate your palm a little bit 這樣馬格納斯力完全作用在側向力的方向上 At release point, press the fingers downward 以同樣的球速與轉速作為例子 and let the ball spin in this way 當二縫線球在抵達本壘板時 Slider (Pitcher's view angle) 會有大約30公分向左 To pitch a curveball 或者向右的橫向移動 rotate your palm to the left 四縫線球則大約有60公分的橫向移動 At release point, rotate the fingers forward 在棒球的術語裡面 and let the ball spin in this way 這種橫向或垂直移動的能力稱之為「尾勁」 Another view angle for curveball 由於表面粗糙程度的關係 To pitch a forkball 棒球的阻力係數介於光滑球體與高爾夫球之間 Split your index and middle fingers apart to grip the ball 雖然說一般認為 and place the thumb beneath the ball 二縫線球比四縫線球阻力大 It leads to low spin rate and large sink 但是從一般的實驗資料來看 Forkball (Pitcher's view angle) 兩者的差別並不大 To pitch a changeup 而且 make an "OK" gesture 在特殊條件下 then put the ball in your hand 二縫線球的阻力反而還明顯的小於四縫線球 This results in low spin rate 投四縫線快速球的時候 and is similar to a forkball 把食指跟中指按在縫線上 Changeup (Pitcher's view angle) 拇指放在正下方 Vertical slider is a special variant of slider 投出去的時候手指往下扣 The Magnus force vanishes 讓球產生這樣子的旋轉 since the spin axis aligns with its motion 四縫線快速球的自轉軸通常會有些傾斜 Gravity and drag are the rest of forces acting on the ball 這會產生往右打者內側移動的尾勁 therefore, it drop fast vertically 從投手的視角來看 The spin axis of a gyroball is in between that of V-slider and cutter 自旋向量S指向右下 and so does its characteristics 利用右手定則得知 It can move as fast as a cut fastball 馬格納斯力M指向右上 and may also sinks like a V-slider 至於說重力則是指向下 Nevertheless 做一個平行四邊形 since every pitch has wide range of physical characteristics 就得到合成力 and since there are no standard criteria for classification 投卡特球的時候 some people think that gyroball can just be classified into cutter or slider 食指與中指稍微偏向外側 To pitch a screwball 放球時 Turn your palm inside out to pitch the ball 手指往下扣 The spin direction of a screwball for a right-handed pitcher 讓球產生這樣子旋轉 is similar to that of a left hander's slider or curve 投二縫線快速球的時候 so the pitch moves down and in on a right-handed batter 食指與中指放在兩條縫線最靠近的地方 The screwball pitchers are rare 拇指放在正下方 because it tends to damage pitcher's arms 投出後會以二縫線方式旋轉 Conclusions 如果食指稍微用力的話 We have gone into the detail of the physics of boundary layer 讓球產生這樣子的旋轉 and have leaned various baseball pitches 產生更大幅度的側移跟下沉 Hope you have fun watching and playing baseball game� 這就是所謂的伸卡球
B1 中級 中文 棒球 流體 球體 係數 方向 轉速 棒球空氣動力學 (Baseball Aerodynamics) 821 41 sai 發佈於 2021 年 01 月 14 日 更多分享 分享 收藏 回報 影片單字