字幕列表 影片播放
Babe Ruth, a legend of Major League Baseball
貝比.魯斯 美國職棒的傳奇人物
He led the league in home runs during a season 12 times
曾經奪得12次全壘打王的頭銜
and made a record of 60 home runs in 1927 season
並且在1927年創下單季60支全壘打的紀錄
as well as 714 home runs of his life time record
在其職業生涯總共累積了714支全壘打
In the dead-ball era
在那個被稱為「死球時代」的時期
Ruth's home run and slugging percentage dominated the league
貝比.魯斯的長打能力遠遠的超越同時代的打擊者
He creates an unchallengeable position in the heart of baseball fans
於是 他在球迷的心中建立了不可挑戰的神格地位
and was respectfully named "Baseball Demigod"
被尊稱為「棒球之神」
Roger Maris, an outfielder of New York Yankee
羅傑.馬里斯 洋基隊的外野手
who challenged Ruth's record after 34 years-
在30多年後挑戰貝比.魯斯的紀錄
- 60 home runs in a season
單季60支全壘打
With his home run number getting close to 60
然而 眼看著馬里斯的全壘打數字步步逼近
however, there was no joy for fans
球迷的心中並沒有喜悅
because there can be only one hero in their heart
因為英雄只能有一個
Roger, up here
嗨 羅傑 看上面
Hey it's the voice from above
這是來自天堂的聲音 哈哈哈...
Hey Maris up here
嘿 馬里斯 看上面
it's the Babe
貝比.魯斯在此
Hey you wnat my record? you want my record?
你想破我的紀錄嗎? 想破嗎?
Catch this you ape piece of shit
垃圾來了給我接好 猿猴
Stop
暫停
In the game 154 in 1961
1961年 洋基第154場比賽
Maris hit number 59 in the 3rd inning
馬里斯在第三局擊出了第59號全壘打
Two outs, in the top of 9th
九局上半 兩出局
and it's the last chance for Maris
馬里斯最後一次打擊機會
Orioles was behind but made an unusual substitution
為了防止他追平紀錄
The closer Hoyt Wilhelm was called on to stop him tying Ruth's record
金鶯隊在落後的情況下做出不尋常的調度
I hate that knuckleball
王牌投手 霍依.威漢登板救援
In this weather it's gonna be dancin' all over the place
我痛恨蝴蝶球
Even if he gets wood on it it's not goin' anywhere
今天的風會讓蝴蝶球亂飄
Bushlinger
就算能碰到球 球也飛不到哪去
Wilhelm takes the sign
小人
but we all know what's coming
威漢收到暗號
Does Roger Maris have one last home rum in him
但大家都知道會配什麼球
he fouled it back
羅傑能從他手中擊出最後一支全壘打嗎
Roger had a good cut on that ball, but it's dancin' all over the place
打成後方界外
Wilhelm's got it
那一球的揮擊角度很好 問題是球四處亂竄
Out
威漢接到球
The knuckleball dominated the hitter and Maris failed to tie the record on that day
出局
Knuckleball is a very special pitch in baseball games
受到蝴蝶球的壓制 馬里斯只能鎩羽而歸
It may suddenly change in direction during its flight
在棒球的世界中 蝴蝶球是一種極為特殊的球路
and dance all over the place with erratic movement
它能夠忽左忽右 或者突然的下墜
so that it can fool the batter
以幾乎不太規則的方式運動
In the following we will investigate knuckleball
也就是這樣能夠愚弄打擊者
base on aerodynamics
接下來 我們將從空氣動力學的角度出發
Furthermore, we will then introduce various pitches of baseball
了解蝴蝶球的原理
When it comes to aerodynamics, most people are familiar with Bernoulli's principle
並且進一步的 介紹並分析其他各種變化球球路
But, to establish enough background knowledge
講到流體力學 一般人最熟知的就是柏努力定律
we need to learn more about the fluid theories
但是在柏努力定律之外
besides the Bernoulli's principle
還有其他重要的流體理論需要了解與認識
First let's talk about boundary layer theory
以便具備足夠的基礎知識
When a fluid flows over a obstacle, they would interact with each other
我們先來談邊界層理論
Let's look into a simplest case
當流體流過障礙物時 會與障礙物發生交互作用
When a fluid passing through a flat plate with velocity V
我們先來研究最簡單的情況
it causes friction on the surface
當流體以速度V流過一個平板
In general, fluids are viscous
流體會跟物體表面發生摩擦
so the flow speeds decrease gradually when it get close to the surface
因為流體一般都是有黏滯性的
and end up at zero
所以越往平板表面靠近 流速會越來越慢
The region where flow speeds gradually decrease
直到趨近於零
is called the "Boundary layer"
這個流速逐步遞減的範圍
Viscosity dominate physical phenomenon in this thin layer
稱之為「邊界層」
and the Bernoulli's principle does not apply in this region
在這個薄層內 黏滯力主導物理現象
However, viscosity has no effect on the region outside the boundary layer
有黏滯力的區域就不適用柏努力定律
where the fluid behaves like a inviscid ideal fluid
然而 在邊界層外面
such that the Bernoulli's principle applies
黏滯力沒有發揮什麼作用
We will back to Bernoulli's principle soon
流體的行為接近於無黏滯性的理想流體
Now pay attention to the phenomenon inside the boundary layer
所以可以使用柏努力定律加以描述
If the flow velocity V is not large
我們稍後會再回來談柏努力定律
The airflow inside the boundary layer is stable
現在先讓我們來關注邊界層內的現象
and the streamlines look like a Mille Crepe
當流速V不大的情況下
This is named a "Laminar boundary layer"
邊界層內的氣流是穩定的
The geometric shape of obstacles have effects on boundary layer
流體的流線就像千層派一樣
For example, when substitute the plate by a sphere
這樣的邊界層稱之為「層流邊界層」
a new physical phenomenon may occur
障礙物的幾何形狀會影響邊界層
Streamlines are drew around the sphere
例如說從平板變成球體的時候
and the green part represents a boundary layer
會有新的物理現象發生
which is a important region
我們把球體周圍的流線畫出來
Let's study the region outside boundary layer first
綠色的部位代表邊界層
where the Bernoulli's principle applies
它是重要的區域
Observe the motion of a small volume element
我們先來探討邊界層外面的區域
Since the speed of a baseball is much lower than sound speed
那是可以運用柏努力定律的地方
the compression effect can be ignore
觀察一小塊體積單元的運動
and the volume of this small element keeps unchanged
因為棒球運動遠低於音速
Imagine it moves in a tube that continuously changes in diameter
不必考慮壓縮效應
When it moves toward A
這一塊小體積在運動過程中保持體積不變
its speed decreases
而且可以把它想像成是在口徑不斷變化的管子中移動
A is called the "stagnation point"
當它靠近A點時
around which the fluid separates to both sides
速度逐漸變慢
The speed increases from A to B
A點又叫做「停滯點」
and reach the highest value at B
流體會從停滯點開始往兩側分離
After passing through B the speed decreases
當它離開A點後速度逐漸增加
and reach the minimum speed when it arrive at C
到達B點時速度最高
Bernoulli's principle states that
然後通過B點之後又逐漸減速
high speed corresponds to low pressure
到達C點時流速又降到最低
and low speed corresponds to high pressure
柏努力定律是說
Therefore, the pressure maximums occurs at A and C
高流速的地方壓力小
and B has the minimum pressure
低流速的地方壓力大
Interesting thing occurs in the downstream region
所以
The pressure gradually increases from B to C
A跟C點的壓力最大
Outside the boundary layer, when the external pressure variation is large enough
B點壓力最小
it can force the downstream boundary layer to move in opposite direction
有趣的地方是發生在下游的區域
Once the inverse flow occurs
從B到C壓力是逐漸變大的
upstream boundary layer can be pushed away from the surface
邊界層在這樣的外部壓力變化下
This phenomenon is called "Boundary layer separation"
如果這個壓力差足夠大的話
The location of "Separation point" is near B
會發生邊界層往上游逆流的現象
and the flow is very unstable behind the separation point
一旦發生逆流
Round and round
上游的邊界層就會被推擠離開球體表面
When various scales of vortices emerge, it is called "Turbulence"
這種現象叫做「邊界層分離」
The tail-like turbulent region behind a obstacle is also named a "Wake"
「分離點」大約會發生在B點附近
Since the separation points occur close to B and D
在分離點之後的流體非常的不穩定
the wake width is comparable to the diameter of the sphere
會不停打轉
As a whole, wake is a low pressure region
然後生出各種大大小小的渦流
and this is the main reason for air resistance
這種情況稱之為「亂流」
However, the location of separation points
因為它是出現在障礙物的後方
are sensitive to the geometric shape of obstacles
所以這整個亂流區域還有個特別的名子
For a streamlined body
叫做「尾流」
the separation occur near its tail
因為分離點就發生在B跟D點附近
The smaller the wake width
所以尾流的寬度大致就和球體的寬度差不多
the smaller the drag
整體來說
This is the reason why airfoils and solar cars
尾流是一個低壓區域
are designed to be streamlined form
這是造成空氣阻力的主要原因
Besides the geometric shape of obstacles
然而分離點發生的位置
the surface roughness also determines the location of separation points
很容易因為障礙物的外形而變化
Take a look at this interesting experiment
像是流線形的物體
The left photo represents a smooth sphere in wind tunnel
分離點會發生在尾端附近
and the separation points are close to the largest cross section of the sphere
尾流變小了
The right photo shows that with a thin trip wire in the upstream
阻力也就大為縮減
the separation points move backward and the wake shrinks
這就是為什麼機翼
What's going on here?
以及太陽能車要設計成流線型的原因
Why a small raised surface leads to this result?
除了障礙物的外形
The reason is that the state of boundary layer has been changed
另一個決定分離點的因素是障礙物表面的粗糙程度
It is originally a laminar flow in the upstream boundary layer
先來看一組有趣的實驗
however, since the raised surface creats small scale vortices
左邊的圖是光滑球體的實驗
the boundary layer becomes turbulent
分離點大約發生在球體最大截面積的地方
This is called a "Turbulent boundary layer"
右圖是在上游的地方加上一圈細線
Fluid flows faster outside the boundary layer because no viscous effect there
結果分離點向後退
A turbulent boundary layer is stirred by vortices
尾流變小了
which makes it mixed with the outer and faster fluid
這是怎麼回事呢?
Therefore, the average velocities of boundary layer increases
為什麼球面上的微小凸起會產生這樣的變化?
and get more momentum toward downstream
原因就在於邊界層的狀態改變了
So that the separation points retreat and the wake shrinks
原本應該是穩定的「層流邊界層」
The purpose of dimple design on a golf ball
因為球面上的凸起部分製造出小尺度的渦流
is to create a turbulent boundary layer and reduce the drag
使得邊界層演變成亂流的狀態
Baseballs are not smooth spheres, too
這稱之為「亂流邊界層」
The seam lines on the surface of a balseball can disturb boundary layer
我們知道邊界層外面的流體不受黏滯力的影響
In general, baseball seams can cause the retreat of separation points
所以有較大的流速
Baseball seams are not uniformly distributed on the surface
亂流邊界層因為受到渦流的攪動
and this could result in the wake deflection
使得它與周圍較快的流體發生混合
Moreover, the rotations of a baseball are classified into two types
這樣一來
One is four-seamer: There are 4 seams passing by in one full rotation
邊界層的平均速度變快了
The other one is two-seamer: There are 2 seams passing by in one full rotation
有更大的動量往下游衝擊過去
The changes in attack angle results in non-symmetric force
如此便造成分離點向後退
which can be measured by wind tunnel experiments
尾流也跟著縮小了
This figure shows the force versus attack angle
高爾夫球在表面上設計了很多的小凹洞
for a four-seamer at zero rotation speed
目的也是為了製造出亂流邊界層
As you can see, the force has four periods of variation in one full rotation
以達到減少阻力的目的
The detail explanations for that figure are given in the following computer graphics
然而
The air flows in steadily from the left
棒球也不是光滑球體
In the beginning the attack angle is zero
表面有約一公釐高的縫線會干擾邊界層
and the seams are symmetrically distributed
通常的情況
therefore, the wake is right behind the ball without being deflected
棒球的縫線也會導致分離點的位置延後
But the wake deflects dramatically when the attack angle changes
縫線在棒球表面的分布是不均勻的
The largest upward deflection occurs when the attack angle is about 22 degree
這會使得尾流發生偏折的現象
What is the reason for wake deflection ?
然而
The air in upstream boundary layer becomes turbulent after passing by the seams
棒球的旋轉又可以分為兩種方式
Notice the seam in the lower half part is more close to the stagnation point
一種是旋轉一圈的時候
and the lower half turbulent boundary leads the upper one
有四條縫線劃過
With longer path and more chance for mixing
稱之為「四縫線球」
the boundary layer gets more velocity and momentum moving downward
另一種是旋轉一圈
so the lower half part separation point retreats more
有兩條縫線劃過
On the contrary
稱之為「二縫線球」
the upper half part separation point is in advance and the average velocity is lower
攻角的變化會使棒球受到不對稱的作用力
After mixing of these two sides of boundary layer flow in the wake
這可以藉由風洞實驗加以測量
the average velocity deviates upward
這張圖是代表四縫線球
and this is the explanation for wake deflection
在轉速等於零時
To realize how the force acting on the ball
各種角度所產生的作用力
one can regard the complex interaction processes as a black box
可以看到棒球自轉一周
The horizontal air flow deflects upward after passing through the black box
作用力重覆變化四個週期
implies that a upward force acting on the air flow
我們現在運用電腦動畫
Simultaneously, there must be a reaction force in the black box exert on the ball
更詳細的來說明這個實驗結果
which is equal in magnitude and opposite in direction
空氣固定的由左邊流進來
as specified by Newton's third law
一開始角度等於零的時候
This is the result of non-symmetric seam distribution
縫線在兩側的分布是對稱的
Keep on varying the attack angle
所以尾流沒有偏折
the force vanishes at about 45 degree
位於球的正後方
beyond which the wake deflects to another side
一旦改變球的攻角
and the force reachs its maximum at about 68 degree
尾流很快的就發生偏折
Then the force vanishs again at 90 degree
在大約22度附近向上偏折最大
that it has goes through a period
要如何解釋偏折的原因呢?
As a result, there are 4 periods in a full rotation of 360 degree
上游的邊界層氣流在經過縫線之後
In the case of two-seam rotation for a knuckleball
會變成亂流邊界層
there are two main periods of force variation
請注意下半邊的縫線比上半邊更接近停滯點
The maximum force is equivalent to 2/3 of baseball weight
也就是下半邊的亂流邊界層提早發生
and the period is two times larger than the case of four-seam rotation
走過更長的路徑
Define the coordinate system first before follow-up discussions
有更多的機會發生混合
Use the rectangular coordinate system
因此邊界層得到更大的速度與動量向下游流去
and let X axis pointing toward home plate
下半邊的分離點就延後了
Y axis pointing toward first base
相反的
Let XY plane be parallel to the ground
上半邊的分離點較早
so Z axis stands vertically
流速也較慢
For this coordinate system
兩側的邊界層氣流在尾流中混合後
The lift force is in the positive Z direction
平均速度偏向上方
the gravity is in the negative Z direction
這就是尾流發生偏折的原因
the lateral force is in the positive/negative Y direction
要理解棒球所受到的作用力
and the drag force is in the negative X direction
我們可以把中間複雜的交互作用過程當成黑盒子看待
Now consider the rotation axis of a knuckleball is perpendicular to the ground
原本水平流進來的空氣
Observe the trajectory from top view
經過黑盒子後向上偏折
and assume the ball spins half a rotation during the flight
這表示空氣受到向上的作用力
The wind tunnel experiment implies that
從牛頓第三運動定律可以知道
there are two periods of left and right motion for a four-seam knuckleball
在這個黑盒子中
In the case of two-seam rotation
一定有大小相等
the knuckleball trajectory has one period of variation
方向相反的反作用力
In practice
作用在棒球上
a pitcher would try to throw the ball as no spin as possible
這就是縫線的不對稱分布所造成的結果
The way is to push the ball with fingertip
繼續改變攻角
but it makes the ball hard to be controlled
到達45度時作用力回復為零
Since the spin axis may not be fixed in some specific direction
再來尾流會向另一側偏折
and since the force is sensitive to attack angle
到68度時作用力最大
the knuckleball trajectory becomes hard to be predicted
90度時又回復為零
This is a demonstration of knuckleball's movement
這樣子就走完一個週期
by Tim Wakefield in a Japan TV show
所以轉一圈360度作用力就有四個週期的變化
From the research of knuckleball we learn that at extremely low spin rate
若是改成以二縫線的方式旋轉
the seam locations or say attack angle
實驗結果發現自轉一周有兩個大的週期變化
determines the force on the baseball
作用力的最大值相當於棒球重量的2/3
In baseball games, however
週期比四縫線大一倍
other kinds of pitches have spin rate over 10 times higher than knuckleball
我們先把座標系定義好以方便之後的討論
and a new physical effect of force enters in-
使用直角座標系
- the "Magnus force"
X方向指向本壘板
To get rid of the disturbance by seams
Y方向指向一壘側
let's begin with a smooth sphere
並且令XY平面與地面平行
When it start to spin
Z軸垂直於地表
The B-side surface and the ambient air move in the same direction
這樣定義的座標系
while C-side moves reversely
升力剛好在正Z方向
Since the fluid inside boundary layer is governed by viscosity
重力則在負Z方向
the B-side boundary layer flows faster than that of C-side toward downstream
側向力在正負Y方向
and carries more momentum
阻力在負X方向
Therefore, the B-side separation point becomes relative backward
我們先假設蝴蝶球的自轉軸垂直於地表
so the wake deflects downward after mixing of these two sides of air
從俯視圖觀察
and the transverse force arises
假設飛行過程中球自轉了半圈
This is called the "Magnus effect"
根據前面風洞實驗的結果來推斷
that resulted from the rotation of moving object in the fluid
四縫線的蝴蝶球會有兩個週期的左右搖擺
The magnitude of Magnus force is probably proportional to
改成二縫線旋轉的話
the air flow speed V and the angular frequency ω of the ball
蝴蝶球的軌跡會有一個週期的變化
So the empirical formula for Magnus force is given by
在實際應用上
1/2 times "Magnus coefficient CM"
投手必須要盡可能的壓抑球的轉動
"air density ρ"
所以投球時要利用指尖把球向前推出
"baseball cross-sectional area A"
這樣的投法是相當難以控制的
"radius R"
自轉軸不一定會固定在特定方向
"angular frequency ω" and the "flow speed V"
再加上作用力的變化對於攻角相當敏感
The Magnus coefficient is a dimensionless quantity
這使得蝴蝶球的軌跡非常難以捉摸
and is the only one parameter to be determined from experiments
在一次的練習當中
Rotation is the motion characterize with direction
紅襪隊的威克菲爾為觀眾展示了蝴蝶球的漂移能力
and can be well described by a "Vector"
從蝴蝶球的研究我們已經了解到
For example, a spin vector S
在極低轉速下
Point your right-hand thumb in the direction of the arrow
縫線的位置
and the grip of the other four fingers represents gyration of the object
或者說攻角
In addition
完全決定棒球的受力情形
the length of the arrow is used to represent the spin rate
但是在棒球運動中
Therefore, a vector can give a complete description of rotation
其他種類的球路都比蝴蝶球自轉快10倍以上
Now we can utilize the right-hand rule
在高速自轉的情況下還要考慮新的物理效應
to determine the direction of Magnus force
那就是「馬格納斯力」
Point your four fingers toward the direction of ball flight
為了要排除縫線的干擾
and align the thumb with spin vector S
我們以光滑的球體來說明
then you got your palm faces the direction of Magnus force
當球體開始自轉的時候
We've learned the Magnus effect by a spinning smooth ball
B側的表面跟周圍空氣的運動是順向的
What about a spinning ball with seams?
C側剛好是反向
The wake becomes fluttering
我們知道邊界層內的流體受到黏滯力控制
The spin of the ball as well as the surface seams result in joint effect
所以B側的邊界層會比C側具有較大的流速往下游流動
and the Magnus force varies periodically
也就是B側的邊界層具有較大的動量
Although the complex behavior of boundary layer has not been well studied
這樣
the average force can still be obtained from experiments
B側的分離點自然較為延後
If the spin vector points toward the third base horizontally
兩側的氣體混合後造成尾流向下方偏移
the Magnus force will totally contribute to lift
球體因此受到橫向的作用力
This figure is the measurement results
這種作用力是由轉動所引起的
The horizontal axis represents the spin parameter SP
叫做「馬格納斯效應」
which is defined as the surface speed Rω of a rotating sphere
馬格納斯力的大小
divided by the flow speed V
大致上正比於空氣的流速V
The vertical axis represents the lift coefficient CL
還有球體的自轉角頻率ω
which is defined by Magnus coefficient times SP
所以馬格納斯力的經驗公式為
The upper curve represents the lift coefficient of 4-seamer
1/2乘以「馬格納斯係數CM」
and the lower one represents the lift coefficient of 2-seamer
「空氣密度ρ」
Taking a 140 km/hr and 20 rev/sec fastball as an example
「棒球截面積A」
The lift coefficient for a 4-seamer is about two times larger than that of a 2-seamer
「半徑R」
The difference between them decreases
「自轉角頻率ω」以及「空氣流速V」
with increasing the spin rate or decreasing the ball speed
馬格納斯係數是一個無因次的量
In this 140kmh and 20rps case:
也是唯一的待定係數
The lift for a 4-seamer is about 60% of the weight
可以從實驗測量得知它的值
while it is about 30% for a 2-seamer
任何物體的轉動是有方向性的
Now the trajectory can be estimated since the lift force is known
所以適合使用「向量」來加以描述
Green and red curves denote the trajectories of 4-seamer and 2-seamer, respectively
譬如說自旋向量S
And the dashed line is a straight line
把拇指指向箭頭方向
When the ball arrives at the plate
那麼四指握起來就代表物體迴旋的方向
the 4-seamer drops about 40 cm
更進一步的
while the 2-seamer drops about 70 cm
還可以用箭頭的長短來代表轉速的快慢
and the difference is about 30 cm
所以向量這種東西可以完整的描述一個物體的自轉
If there is no lift force
至於說馬格納斯力的方向
and consider only the gravitational force on the ball
可以利用右手定則來決定
the ball would drop about 1 meter
以四隻指頭指向棒球前進的方向
Another extreme case is a ball with vertical spin axis
拇指指向自旋向量
such that Magnus force acts totally in the direction of lateral force
這樣掌心面對的方向就代表馬格納斯力作用的方向
Consider the same spin rate and ball speed discussed above
我們已經了解光滑球體轉動的馬格納斯效應
A 2-seamer moves about 30 cm to the left or right
那如果把縫線的干擾加進來呢?
when it arrive at the plate
尾流的方向開始變得搖擺不定
and the horizontal movement for a 4-seamer is about 60 cm
球體的自轉
The ability of horizontal or vertical motion is called "tail-strength"
與表面的縫線產生綜合的效應
in Taiwan's baseball terminology
使得馬格納斯力變成隨時間變化
Owing to the surface roughness
雖然說
the drag coefficient of a baseball is in between that of a smooth ball and a golf ball
邊界層複雜的行為還沒有被完全的研究透澈
General speaking, people think that
然而
2-seamers have larger drag than 4-seamers
透過實驗的測量
But the experiment data show that difference is not big
還是可以得到平均的作用力
On the contrary
如果球的自旋向量水平
2-seamers have obviously smaller drag for some special conditions
指向三壘的一側
To pitch a 4-seam fastball
這樣馬格納斯力就會貢獻在升力上面
place your index and middle fingertips on the baseball seam
這張圖是實驗測量結果
and place your thumb right beneath the ball
橫軸是自轉參數SP
At release point, press the fingers downward
定義為球體表面圓周運動速度Rω
and get the ball backspin like this
除以流速V
The spin axis of a 4-seam fast ball is in general oblique
縱軸是升力係數CL
which results in the inside movement for a right-handed batter
定義為馬格納斯係數乘以SP
4-seam fastball
上面的曲線代表四縫線球的升力係數
In the pitcher's view angle
下面的是二縫線球的升力係數
Spin vector S pointing toward lower right
以一顆時速140公里
and the right-hand rule tells that
轉速每秒20轉的快速球為例
Magnus force M pointing toward the upper right
四縫線球的升力係數大約是二縫線球的兩倍
As for gravity, Fg pointing downward
增加轉速
The resultant force is obtained by making a parallelogram
或者降低球速
To pitch a cutter
兩者的差距會明顯的縮小
place the index and middle fingers a little bit outside
跟棒球的重量相比
and press the fingers downward at release point
這個四縫線球的升力相當於棒球重量的60%左右
and get the ball spin like this
而二縫線球則約為30%
Cutter (Pitcher's view angle)
知道升力的大小就可以估算運動軌跡
To pitch a 2-seam fastball
綠線與紅線分別代表四縫線與二縫線快速球的運動軌跡
place the index and middle fingertips on the narrow part of the seams
虛線是一條直線
and place the thumb right beneath the ball
當球底達本壘板
then it will rotate as a 2-seamer after delivery
四縫線球大約會掉落40公分左右
2-seam fastball (Pitcher's view angle)
而二縫線球大約掉落70公分左右
If push off the index finger at release point and let the ball side spin
兩者差距約30公分
the ball will get more lateral movement and sinking
若是完全不考慮升力
and it becomes a "sinker"
在只受重力作用的情況下
2-seam sinker (Pitcher's view angle)
棒球會下落接近1公尺的程度
To pitch a slider
另一種極端是
place the index and middle fingers outside of the ball
自轉軸垂直地面的情況
and rotate your palm a little bit
這樣馬格納斯力完全作用在側向力的方向上
At release point, press the fingers downward
以同樣的球速與轉速作為例子
and let the ball spin in this way
當二縫線球在抵達本壘板時
Slider (Pitcher's view angle)
會有大約30公分向左
To pitch a curveball
或者向右的橫向移動
rotate your palm to the left
四縫線球則大約有60公分的橫向移動
At release point, rotate the fingers forward
在棒球的術語裡面
and let the ball spin in this way
這種橫向或垂直移動的能力稱之為「尾勁」
Another view angle for curveball
由於表面粗糙程度的關係
To pitch a forkball
棒球的阻力係數介於光滑球體與高爾夫球之間
Split your index and middle fingers apart to grip the ball
雖然說一般認為
and place the thumb beneath the ball
二縫線球比四縫線球阻力大
It leads to low spin rate and large sink
但是從一般的實驗資料來看
Forkball (Pitcher's view angle)
兩者的差別並不大
To pitch a changeup
而且
make an "OK" gesture
在特殊條件下
then put the ball in your hand
二縫線球的阻力反而還明顯的小於四縫線球
This results in low spin rate
投四縫線快速球的時候
and is similar to a forkball
把食指跟中指按在縫線上
Changeup (Pitcher's view angle)
拇指放在正下方
Vertical slider is a special variant of slider
投出去的時候手指往下扣
The Magnus force vanishes
讓球產生這樣子的旋轉
since the spin axis aligns with its motion
四縫線快速球的自轉軸通常會有些傾斜
Gravity and drag are the rest of forces acting on the ball
這會產生往右打者內側移動的尾勁
therefore, it drop fast vertically
從投手的視角來看
The spin axis of a gyroball is in between that of V-slider and cutter
自旋向量S指向右下
and so does its characteristics
利用右手定則得知
It can move as fast as a cut fastball
馬格納斯力M指向右上
and may also sinks like a V-slider
至於說重力則是指向下
Nevertheless
做一個平行四邊形
since every pitch has wide range of physical characteristics
就得到合成力
and since there are no standard criteria for classification
投卡特球的時候
some people think that gyroball can just be classified into cutter or slider
食指與中指稍微偏向外側
To pitch a screwball
放球時
Turn your palm inside out to pitch the ball
手指往下扣
The spin direction of a screwball for a right-handed pitcher
讓球產生這樣子旋轉
is similar to that of a left hander's slider or curve
投二縫線快速球的時候
so the pitch moves down and in on a right-handed batter
食指與中指放在兩條縫線最靠近的地方
The screwball pitchers are rare
拇指放在正下方
because it tends to damage pitcher's arms
投出後會以二縫線方式旋轉
Conclusions
如果食指稍微用力的話
We have gone into the detail of the physics of boundary layer
讓球產生這樣子的旋轉
and have leaned various baseball pitches
產生更大幅度的側移跟下沉
Hope you have fun watching and playing baseball game�
這就是所謂的伸卡球