字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 This video was made possible by Anker – more on that later. 這段視頻是由Anker提供的--稍後再談。 Over the last twenty years, a slew of ever-lighter, ever-more-powerful rechargeable batteries 在過去的二十年裡,出現了一系列更輕、更強大的可充電電池。 has enabled the rise of smartphones, miniature high definition cameras, drones, commercially 使得智能手機、微型高清攝影機、無人機、商用飛機等的崛起。 competitive electric cars, wireless headphones, and so on. 競爭力的電動汽車、無線耳機等。 It seems like we're moving towards a future where the entire planet is battery-powered, 似乎我們正在走向一個整個地球都是電池供電的未來。 but there are two big factors that will come into play: 1) how light and energy dense we 但有兩個大的因素會發揮作用。1)我們的光和能量密度有多大 can make batteries, and 2) whether we'll even be able to physically manufacture enough 能否製造電池,以及2)我們是否能實際製造出足夠的。 batteries. 電池。 This video covers part 1 of this question, and Brian of Real Engineering is covering 這段視頻涵蓋了這個問題的第1部分,Real Engineering的Brian則涵蓋了 part 2 – we'll link to his video at the end. 第二部分--我們會在最後鏈接到他的視頻。 Ok, so batteries have been getting better and better, and nowadays, they can store over 好了,電池的性能越來越好了,現在的電池可以存儲超過100萬塊錢。 twice as much energy per kilogram as in the 1990s , which means they're half the weight 每公斤的能量是90年代的兩倍,這意味著它們的重量是90年代的一半。 for the same energy stored. 儲存相同的能量。 Hence all the drones and smart phones. 是以,所有的無人機和智能手機。 So what's the limit to this trend? 那麼這種趨勢的極限是什麼呢? Batteries are, in principle, fairly simple: take two partially dissolved metals, one whose 電池原則上是相當簡單的:取兩種部分溶解的金屬,其中一種金屬的含量為0.5mg/L。 atoms want to dissolve more and give up electrons, and one whose atoms want to deposit back on 原子想更多地溶解並放棄電子,而一個人的原子想重新沉積在電子上。 the solid bit but need spare electrons to do so. 但需要多餘的電子來完成。 When you put these two together connected with a wire or some other conductor , they'll 當你把它們放在一起,用電線或其他導體連接時,它們就會被連接到一起。 satisfy each others' wants, either dissolving more or depositing more, and sending the electrons 滿足對方的要求,要麼多溶解,要麼多沉積,把電子送去 to each other along the wire. 沿著電線互相連接。 Voilá: electricity! Voilá:電! And if you force electricity backwards through the wire they'll reverse their dissolving 如果你強行將電反過來穿過電線,它們就會反過來溶解。 and depositing, otherwise known as “re-charging”. 並存入,也就是所謂的 "再充電"。 The intrinsic limits to how lightweight batteries can be are imposed by two factors: the weight 電池輕量化的內在限制是由兩個因素造成的:重量。 of the two materials you use, and how much energy they give off per electron traded. 你使用的兩種材料,以及它們每交易一個電子所釋放的能量。 So you want the lightest materials that produce the most energy per electron. 所以你要的是最輕的材料,每個電子產生的能量最大。 Metals from the left side of the periodic table, like lithium, sodium and beryllium, 週期表左側的金屬,如鋰、鈉和鈹。 really want to lose electrons, while atoms from the right side like fluorine, oxygen, 真要失去電子,而從右邊的原子如氟、氧。 and sulfur really want electrons. 和硫真的要電子。 And atoms close to the top are lighter weight, so we can just slap together lithium and fluorine 而靠近頂部的原子重量較輕,所以我們可以直接把鋰和氟放在一起。 and make a perfect battery, right? 並做出一個完美的電池,對嗎? Unfortunately, no – lithium and fluorine are way too reactive – one of the only well-documented 不幸的是,沒有--鋰和氟的反應性太強了--這是唯一有據可查的。 practical uses of a lithium fluorine reaction I could find was incredibly powerful and dangerous 我所能找到的氟化鋰反應的實際用途是非常強大和危險的。 rocket fuel. 火箭燃料。 In practice, the electrochemistry of batteries is incredibly complicated, and requires combining 在實踐中,電池的電化學非常複雜,需要結合以下因素 metals that work well together chemically, electrically, and controllably at normal temperatures 在常溫下能很好地在化學上、電氣上和控制上一起工作的金屬。 and pressures . For example, oxygen is a gas, sulfur is a horrible conductor, and sodium 和壓力 。例如,氧氣是一種氣體,硫磺是一種可怕的導體,而鈉是一種可怕的導體。 needs to be molten – challenges to using any of them to make batteries. The current standard for lightweight, rechargeable and commercially safe batteries uses lithium 目前輕質、可充電和商業安全電池的標準是使用鋰離子電池。 and graphite on one side, with a variety of options for the other side, often cobalt oxide 和石墨的一面,另一面有多種選擇,通常是氧化鈷。 . Lithium atoms are what either dissolve or deposit in order to transfer electrons, hence .鋰原子是為了轉移電子而溶解或沉澱的,是以也就是 the name “lithium ion”, while the other materials are dead weight along for the ride 鋰離子 "之名,而其他材料則是死氣沉沉的陪襯。 – I mean, they play important chemical roles, but they greatly increase the weight-per-electron - 我的意思是,他們發揮了重要的化學作用,但他們大大增加了每電子的權重。 transferred. 轉移。 So how much lighter will batteries get? 那麼電池會變得多輕呢? Theoretical calculations put the minimum possible weight for lithium ion batteries at around 理論計算認為,鋰離子電池的最小可能重量約為1. half what they currently are . A lighter candidate currently being developed 目前的一半。目前正在開發一種更輕的候選產品 is the lithium-sulfur battery , which has a similar amount energy-per-electron as lithium-ion 是鋰硫電池,它的每電子能量與鋰離子電池相似。 batteries, but lithium and sulfur are lighter than lithium and cobalt, oxygen and carbon 電池,但鋰和硫比鋰和鈷、氧和碳更輕 , so a battery with equivalent capacity can in principle weigh around a third as much 是以,同等容量的電池原則上重量可達到三分之一左右。 . Even better, lithium-oxygen batteries , while .更妙的是,鋰氧電池 ,而。 still an incredibly far-off technology, are theoretically four times lighter than lithium 的技術,理論上比鋰電輕四倍。 sulfur batteries. 硫磺電池。 But that's pretty close to the limit for chemical-reaction-based batteries – there 但這已經很接近化學反應型電池的極限了--有了。 aren't really any materials that give off more energy per electron for a given weight 沒有任何材料能在給定重量的情況下釋放出更多的電子。 than lithium on the dissolving side and fluorine on the depositing side , and a lithium-fluorine 比鋰的溶解面和氟的沉積面,以及鋰-氟的沉積面。 battery – as dangerous and impossible as it is – is limited to only be about 10% 電池--儘管危險和不可能--被限制在只有大約10%的範圍內。 lighter than a lithium-oxygen battery . So the theoretical lower limit for batteries, 比鋰氧電池更輕 。所以電池的理論下限 。 period, is about 5% of current weights. 期,約為當前權重的5%。 But that's an incredible long-shot, everything-works-out, perfect world scenario. 但這是一個不可思議的長鏡頭,一切都很順利,完美的世界場景。 More likely is that we end up combining pretty-good batteries with supercapacitors, fuel cells, 更有可能的是,我們最終將相當好的電池與超級電容器、燃料電池結合起來。 hydropower and other mechanical energy storage types, and airplanes will probably always 水電和其他機械儲能類型,而飛機可能會一直保持著 have to use some sort of hydrocarbon fuel. 必須使用某種碳氫化合物燃料; Or maybe we'll finally figure out fusion. 或者我們最終會搞清楚核聚變。 Ok, so here's an example of the amazing battery technology we have available today 好了,這裡有一個例子,說明我們今天擁有的驚人的電池技術。 : this battery pack is crazy small and light – it's basically eight of these with :這個電池組是瘋狂的小和輕-它基本上是八個這些與 some clever circuitry – and it has enough energy to charge a smartphone 10 times, which 一些聰明的電路 - 它有足夠的能量來充電智能手機10倍,這 is equivalent to running this LED lightbulb for 10 hours. 相當於這個LED燈泡運行10小時。 The makers of this ridiculous battery pack, Anker, are sponsoring this video and also 這個可笑的電池組的製造商,Anker,是贊助這個視頻,還 running a ridiculous contest where they're giving away ten prizes of two thousand dollars 運行一個荒謬的比賽,他們在那裡送出 10個獎品兩千元錢 plus one of their battery packs – they're asking for video submissions about a time 再加上他們的電池組--他們要求提交關於時間的視頻資料。 that running out of power was awkward or unpleasant – you know, like how Apollo 13 almost ran 電力耗盡是尷尬或不愉快的 - 你知道的,就像阿波羅13號幾乎跑掉一樣 out of batteries, or how I only made it halfway through mowing the lawn last week. 電池用完了,或者我上週修剪草坪只修到一半。 You can find out more about Anker's batteries and the contest by going to the links in the 您可以通過鏈接瞭解更多關於Anker電池和比賽的資訊。 video description. 視頻描述。 And one aspect of batteries I haven't mentioned at all yet is power delivery - aka, how quickly 而電池的一個方面我還沒有提到,那就是電力傳輸--也就是如何快速地 they can charge your devices – this battery pack is smart enough to detect what you've 他們可以為你的設備充電--這款電池組足夠智能,可以檢測你的設備。 got plugged in in order to optimize charging time. 為了優化充電時間,插上了電源。 And of course don't forget to check out Brian's video about whether or not it's 當然不要忘了看看Brian的視頻,關於是否是 even possible to make enough batteries to power the planet. 甚至有可能製造出足夠的電池為地球供電。
B2 中高級 中文 電池 電子 離子 重量 能量 燃料 電池將為世界提供動力?| 鋰離子電池的極限 (Will Batteries Power The World? | The Limits Of Lithium-ion) 71 3 Summer 發佈於 2021 年 02 月 18 日 更多分享 分享 收藏 回報 影片單字