Placeholder Image

字幕列表 影片播放

  • In 2003,

    譯者: Lo Hsien Huang 審譯者: Yanyan Hong

  • when we sequenced the human genome,

    在 2003 年,

  • we thought we would have the answer to treat many diseases.

    當我們為人類的基因組定序時,

  • But the reality is far from that,

    我們以為會找到許多疾病的治療方法。

  • because in addition to our genes,

    但實際情形卻遠非如此,

  • our environment and lifestyle could have a significant role

    因為除了我們的基因之外,

  • in developing many major diseases.

    生活環境和生活作息

  • One example is fatty liver disease,

    也是引發重大疾病的關鍵因素。

  • which is affecting over 20 percent of the population globally,

    以脂肪肝疾病爲例,

  • and it has no treatment and leads to liver cancer

    全球超過 20% 的人口 受此疾病影響,

  • or liver failure.

    目前沒有任何治療方法 而且最後可發展為肝癌,

  • So sequencing DNA alone doesn't give us enough information

    或是肝臟衰竭。

  • to find effective therapeutics.

    所以只靠基因定序 並不能給我們足夠的訊息,

  • On the bright side, there are many other molecules in our body.

    找出有效的治療方法。

  • In fact, there are over 100,000 metabolites.

    好消息是,我們身體裡 還有許多其他的分子,

  • Metabolites are any molecule that is supersmall in their size.

    事實上,我們身體 有超過十萬的代謝物。

  • Known examples are glucose, fructose, fats, cholesterol --

    代謝物是體積超級小的分子,

  • things we hear all the time.

    已知的例子包括, 葡萄糖、果糖、脂肪、膽固醇——

  • Metabolites are involved in our metabolism.

    我們時常聽到的這些東西。

  • They are also downstream of DNA,

    代謝物會參與新陳代謝活動,

  • so they carry information from both our genes as well as lifestyle.

    它們也是 DNA 的後段,

  • Understanding metabolites is essential to find treatments for many diseases.

    所以它們帶著基因訊息 也透露出我們的生活作息。

  • I've always wanted to treat patients.

    要找出許多疾病的治療方法 就有必要瞭解代謝物,

  • Despite that, 15 years ago, I left medical school,

    我一直都想要醫治好病人,

  • as I missed mathematics.

    但是十五年前,

  • Soon after, I found the coolest thing:

    因爲傾心於數學而離開了醫學院。

  • I can use mathematics to study medicine.

    不久,我發現最酷的事情是:

  • Since then, I've been developing algorithms to analyze biological data.

    我可以用數學來研究醫學,

  • So, it sounded easy:

    從那時起,我就一直開發 演算法用來分析生物數據。

  • let's collect data from all the metabolites in our body,

    這聽起來很簡單:

  • develop mathematical models to describe how they are changed in a disease

    我們收集身體中所有代謝物的數據,

  • and intervene in those changes to treat them.

    然後開發數學模型來描述 它們在疾病中如何變化,

  • Then I realized why no one has done this before:

    並且干預這些變化來進行治療。

  • it's extremely difficult.

    然後,我明白為什麼之前 沒有人做過這件事了:

  • (Laughter)

    因為這實在太困難了。

  • There are many metabolites in our body.

    (笑聲)

  • Each one is different from the other one.

    我們身體中有太多代謝物了,

  • For some metabolites, we can measure their molecular mass

    每一個都不盡相同。

  • using mass spectrometry instruments.

    針對一些代謝物,

  • But because there could be, like, 10 molecules with the exact same mass,

    我們能夠用質譜儀 來測量它們的分子量。

  • we don't know exactly what they are,

    但是具有完全相同的 分子量可能有十種之多,

  • and if you want to clearly identify all of them,

    所以無法知道它們確切是什麼東西,

  • you have to do more experiments, which could take decades

    假如要清楚辨識所有代謝物,

  • and billions of dollars.

    必須要做更多的實驗, 那有可能要花上數十年的時間,

  • So we developed an artificial intelligence, or AI, platform, to do that.

    還要耗費幾十億美元。

  • We leveraged the growth of biological data

    因此,我們開發了一種 人工智慧來做這事。

  • and built a database of any existing information about metabolites

    我們利用生物數據的增長,

  • and their interactions with other molecules.

    然後建立一個資料庫 裡面有代謝物的相關訊息,

  • We combined all this data as a meganetwork.

    包含代謝物與其他分子 相互作用的訊息,

  • Then, from tissues or blood of patients,

    我們把所有數據組合成一個巨大網絡。

  • we measure masses of metabolites

    接著,從患者的器官組織或是血液中,

  • and find the masses that are changed in a disease.

    我們測量到代謝物的分子量,

  • But, as I mentioned earlier, we don't know exactly what they are.

    並且尋找因疾病 而產生變化的代謝物質量。

  • A molecular mass of 180 could be either the glucose, galactose or fructose.

    但是,正如我稍早提過, 我們無法確切知道它們是什麼,

  • They all have the exact same mass

    分子量為 180 可能是葡萄糖, 不然就是半乳糖或是果糖,

  • but different functions in our body.

    它們都擁有相同的質量,

  • Our AI algorithm considered all these ambiguities.

    但在身體中有著不同的功能。

  • It then mined that meganetwork

    我們的人工智慧演算考慮到 這些含糊不清的情形,

  • to find how those metabolic masses are connected to each other

    它會在巨大網絡中挖掘數據,

  • that result in disease.

    找出那些代謝物如何相互連結,

  • And because of the way they are connected,

    才會導致疾病的發生。

  • then we are able to infer what each metabolite mass is,

    而且因為它們連接的方式,

  • like that 180 could be glucose here,

    我們得以推斷出 每個代謝物的分子量是多少。

  • and, more importantly, to discover

    在這裡,分子量 180 的可能是葡萄糖。

  • how changes in glucose and other metabolites

    而且更重要的是,

  • lead to a disease.

    發現葡萄糖和其他代謝物的變化

  • This novel understanding of disease mechanisms

    如何引發疾病。

  • then enable us to discover effective therapeutics to target that.

    這種針對疾病機制的新穎理解,

  • So we formed a start-up company to bring this technology to the market

    讓我們能夠針對疾病 找出有效的治療方法。

  • and impact people's lives.

    所以我們成立了一家新創公司 將這項技術帶入市場,

  • Now my team and I at ReviveMed are working to discover

    對大家的生活帶來正面影響,

  • therapeutics for major diseases that metabolites are key drivers for,

    現在我和團隊 在 ReviveMed 生技公司

  • like fatty liver disease,

    正利用代謝物 努力尋找重大疾病的療法,

  • because it is caused by accumulation of fats,

    像是脂肪肝疾病,

  • which are types of metabolites in the liver.

    這是由於脂肪的堆積引起。

  • As I mentioned earlier, it's a huge epidemic with no treatment.

    而脂肪是肝臟中 不同類型的代謝物組成,

  • And fatty liver disease is just one example.

    我稍早提到這種重大疾病 目前沒有任何治療方式,

  • Moving forward, we are going to tackle hundreds of other diseases

    脂肪肝疾病只是其中一個例子,

  • with no treatment.

    我們接著要解決

  • And by collecting more and more data about metabolites

    其他數百種目前尚無治療方式的疾病。

  • and understanding how changes in metabolites

    藉著搜集更多的代謝物數據,

  • leads to developing diseases,

    並且瞭解這些代謝物的變化

  • our algorithms will get smarter and smarter

    如何引發疾病。

  • to discover the right therapeutics for the right patients.

    我們的演算法會變得愈來愈聰明,

  • And we will get closer to reach our vision

    幫助病患找出正確的治療方法。

  • of saving lives with every line of code.

    而且我們能夠利用每條基因碼

  • Thank you.

    一步步達成拯救生命的願景。

  • (Applause)

    謝謝大家。

In 2003,

譯者: Lo Hsien Huang 審譯者: Yanyan Hong

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 治療 葡萄糖 數據 變化 訊息

【TED】Leila Pirhaji:人工智能和代謝物的醫學潛力(The medical potential of AI and metabolites | Leila Pirhaji)。 (【TED】Leila Pirhaji: The medical potential of AI and metabolites (The medical potential of AI and metabolites | Leila Pirhaji))

  • 116 5
    林宜悉 發佈於 2021 年 01 月 14 日
影片單字