中級 美國腔 43 分類 收藏
開始影片後,點擊或框選字幕可以立即查詢單字
字庫載入中…
回報字幕錯誤
This screencast demonstrates the use of reactor models RStoic, RGibbs, RPlug, and RCSTR through
an example problem on the production of ethyl acetate. Open your Aspen simulation and begin
a new flow sheet using metric units. To start, enter your process components, ethanol, acetic
acid, ethyl acetate, and water. Choose NRTL HOC as your method. Watch the related method
video to learn more about choosing a property method. When all information is entered, run
the property analysis and then go to the simulation environment. To run all four reactors in one
simulation, create a duplicator block, which duplicates an inlet stream and can send it
to multiple locations. Create a RStoic, RGibbs, RPlug, and RCSTR reactor, renaming each as
such. Add a feed stream into your duplicator, and connect the duplicator outlets to each
reactor, naming the streams F-Reactor Type. Create product streams from each reactor,
naming them P-Reactor Type. When you're done, your flow sheet should look like this. Click
the green next arrow to specify the feed conditions. The stream enters at 70 degrees Celsius and
1 atmosphere. Input the following parameters in kilomoles per hour. 8.892 water, 186.59
ethanol, and 192.6 acetic acid. Click the green next arrow to go to the duplicator block.
There is no information to enter here, so click the green arrow again. For the sake
of comparison, all reactors will be specified at 1 atmosphere and 70 degrees Celsius. Make
sure all reactors have vapor-liquid selected as the valid phases. For the CSTR, specify
a volume of 0.14 cubic meters. You can see that the RCSTR model requires a reaction to
be entered before you can proceed in the simulation. At this point, scroll down on the menu tree
and click on the reactions folder. Click new, leave the label as R1, and select a POWERLAW
reaction type. Click new again, and enter the forward reaction: ethanol and acetic acid
goes to ethyl acetate and water. Assume the reaction is first order with respect to each
of the reactants, and zeroth order with respect to each of the products. Enter -1 and 1 for
the coefficients, and 1 and 0 for the exponents of your reactants and products, respectively.
Now we'll enter the reverse reaction: ethyl acetate plus water goes to ethanol and acetic
acid. Enter -1 and 1 for the coefficients, and 1 and 0 for the exponents of your reactants
and products, respectively. Press the green arrow to input the reaction's kinetic information.
For both reactions, the reacting phase will be liquid, and the concentration basis will
be molarity. For the forward reaction, specify a k value as 1.9 * 10^8, and an E value as
5.95*10^7 J/kmol. Make sure the units are correct before proceeding. Repeat the procedure
for the reverse reaction by selecting it from the dropdown menu. The k value for the reverse
reaction is 5.0*10^7, and the E value is 5.95*10^7 J/kmol. Press the green arrow to go back to
the CSTR reaction tab. You can now move the R1 reaction to your selected reaction set.
Pressing the green arrow brings you to RGibbs. Remember the reactor is operating at 1 atmosphere
and 70 degrees Celsius. Press the green next arrow to move on to RPlug. Choose reactor
with specified temperature as the operating type, and choose the operating condition "Constant
at specified reactor temperature." Enter 70 degrees Celsius. Pressing the green arrow
brings you to the configuration tab. Input a length of 2 meters and a diameter of 0.3
meters. Insure the process stream valid phases are vapor-liquid. Go the reactions tab and
select R1 and your reaction set. Pressing the green arrow again brings you to RStoic.
Input your reactor temperature and pressure. On the reactions tab, click new and input
the forward reaction with the appropriate coefficients. Enter 0.7 as the fractional
conversion of ethanol. Press the green arrow and run the simulation. Open the stream summary
to view the results. You can compare the production rate of ethyl acetate of the four reactors.
You can see that RGibbs actually produces the most ethyl acetate, while RCSTR produces
the least. Additionally, if you click on the CSTR Results block on the menu tree, you can
see the heat duty required for this equipment. Watch the following video in the YouTube playlist
to see an application of the reactors chapter on a chlorobenzene production plant.
提示:點選文章或是影片下面的字幕單字,可以直接快速翻譯喔!

載入中…

化工設計-反應器計算 (Aspen Plus: Reactor Example Problem)

43 分類 收藏
蔡育德 發佈於 2019 年 11 月 9 日
看更多推薦影片
  1. 1. 單字查詢

    在字幕上選取單字即可即時查詢單字喔!

  2. 2. 單句重複播放

    可重複聽取一句單句,加強聽力!

  3. 3. 使用快速鍵

    使用影片快速鍵,讓學習更有效率!

  4. 4. 關閉語言字幕

    進階版練習可關閉字幕純聽英文哦!

  5. 5. 內嵌播放器

    可以將英文字幕學習播放器內嵌到部落格等地方喔

  6. 6. 展開播放器

    可隱藏右方全文及字典欄位,觀看影片更舒適!

  1. 英文聽力測驗

    挑戰字幕英文聽力測驗!

  1. 點擊展開筆記本讓你看的更舒服

  1. UrbanDictionary 俚語字典整合查詢。一般字典查詢不到你滿意的解譯,不妨使用「俚語字典」,或許會讓你有滿意的答案喔