字幕列表 影片播放
People don't realize
譯者: 易帆 余 審譯者: Helen Chang
that red light and benign near-infrared light
人們不了解
go right through your hand, just like this.
這個紅光和這個溫和的近紅外光
This fact could enable better, faster and cheaper health care.
可以穿透你的手,就像這樣。
Our translucence is key here.
這個原理可以實現更好、 更快、更便宜的醫療照顧。
I'm going to show you how we use this key and a couple of other keys
我們的半透性是關鍵。
to see deep inside our bodies and brains.
我即將要向各位展示 如何利用這個以及其他的關鍵
OK, so first up ...
來看透我們身體與大腦的深層。
You see this laser pointer and the spot it makes on my hand?
好,首先...
The light goes right through my hand --
各位看到這支雷射筆 與我手上這個光點嗎?
if we could bring the lights down, please --
這道光穿透了我的手——
as I've already shown.
請把現場燈光轉弱——
But you can no longer see that laser spot.
正如我已經展示的。
You see my hand glow.
但各位已經看不到那個雷射點了,
That's because the light spreads out, it scatters.
只看到我手上的光暈,
I need you to understand what scattering is,
那是因為光線分開、分散了,
so I can show you how we get rid of it
我需要各位先了解 甚麼是光的分散現象,
and see deep inside our bodies and brains.
這樣才能讓各位明白如何移除它,
So, I've got a piece of chicken back here.
並看到我們身體與大腦的深層內部。
(Laughter)
後面這裡有一塊雞肉。
It's raw.
(笑聲)
Putting on some gloves.
它是生的。
It's got the same optical properties as human flesh.
我戴上手套。
So, here's the chicken ... putting it on the light.
雞肉與人肉有相同的光學特性。
Can you see, the light goes right through?
這是雞肉...把它放到光上面。
I also implanted a tumor in that chicken.
各位有看到這道光穿越過雞肉了嗎?
Can you see it?
我在雞肉裡植入了一塊腫瘤。
Audience: Yes.
你們有看到嗎?
Mary Lou Jepsen: So this means, using red light and infrared light,
觀眾:有。
we can see tumors in human flesh.
講者:這意味著 利用紅光和紅外線光,
But there's a catch.
我們可以看到人身上的腫瘤。
When I throw another piece of chicken on it,
但有一個問題。
the light still goes through,
如果我再放上另一塊雞肉,
but you can no longer see the tumor.
光仍然可以穿越,
That's because the light scatters.
但你看不到腫瘤了。
So we have to do something about the scatter
那是因為光被分散掉了。
so we can see the tumor.
所以我們要想辦法克服光分散的問題,
We have to de-scatter the light.
這樣我們才能看到腫瘤。
So ...
我們要把光反分散。
A technology I spent the early part of my career on
所以....
enables de-scattering.
我在職涯的早期階段
It's called holography.
實現可以反散射的技術。
And it won the Nobel Prize in physics in the 70s,
它叫全息攝影術,
because of the fantastic things it enables you to do with light.
在 70 年代獲得物理諾貝爾獎,
This is a hologram.
因為這個神奇的技術, 可以幫你處理光的問題。
It captures all of the light, all of the rays, all of the photons
這個就是全息影像。
at all of the positions and all of the angles, simultaneously.
它能捕捉到所有光、雷射、 所有光子的入射位置與角度,
It's amazing.
在同一時間內全部捕捉到。
To see what we can do with holography ...
很神奇。
You see these marbles?
為了理解這個全息圖裝置 可以做些甚麼,
Look at these marbles bouncing off of the barriers,
各位看到這些彈珠嗎?
as an analogy to light being scattered by our bodies.
注意看這些 正在障礙物上彈跳著的彈珠,
As the marbles get to the bottom of the scattering maze,
這就像是光在我們體內散射的現象。
they're chaotic, they're scattering and bouncing everywhere.
當這些彈珠在這迷宮似的 彈珠檯上往下掉時,
If we record a hologram at the bottom inside of the screen,
它們會到處亂跑、散開、彈跳。
we can record the position and angle of each marble exiting the maze.
如果我們在螢幕底部 記錄它們的全息路徑,
And then we can bring in marbles from below
就能記錄到所有彈珠穿越迷宮時 各自的位置與角度。
and have the hologram direct each marble to exactly the right position and angle,
然後我們可以把彈珠從下面帶上來,
such as they emerge in a line at the top of the scatter matrix.
透過全息圖裝置,導引每顆彈珠 以正確的位置與角度回彈,
We're going to do that with this.
使它們回到一開始排隊 從散射矩陣掉下來的地方。
This is optically similar to human brain.
我們要用這個來做。
I'm going to switch to green light now,
這個東西的光學特性 跟我們人類的大腦很像。
because green light is brighter to your eyes than red or infrared,
我現在要換到綠光,
and I really need you to see this.
因為綠光對人類的肉眼而言, 比紅光或紅外線來得更明亮,
So we're going to put a hologram in front of this brain
我真的需要各位看清楚這個。
and make a stream of light come out of it.
我們要在這個類似人腦的物體上, 放上一個全息影像裝置
Seems impossible but it isn't.
然後從它後面打光。
This is the setup you're going to see.
看起不可思議,但真的可以。
Green light.
這是你們將要看到的設置:
Hologram here, green light going in,
綠光,
that's our brain.
全息影像裝置放這裡,綠光打進去,
And a stream of light comes out of it.
這是我們的大腦,
We just made a brain lase of densely scattering tissue.
然後一股綠光從裡面出來了。
Seems impossible, no one's done this before,
我們剛做了 高密度散射組織的大腦雷射。
you're the first public audience to ever see this.
看起來很不可思議, 之前沒有人這樣做,
(Applause)
各位是我第一次公開展示的觀眾。
What this means is that we can focus deep into tissue.
(笑聲)
Our translucency is the first key.
也就是說,我們可以看到 組織的深層內部。
Holography enabling de-scattering is the second key
我們的半透明性是第一個關鍵。
to enable us to see deep inside of our bodies and brains.
全息攝影裝置有 反散射的作用是第二關鍵,
You're probably thinking,
如此我們就可以看到身體 與大腦的深層內部。
"Sounds good, but what about skull and bones?
各位可能在想,
How are you going to see through the brain without seeing through bone?"
「聽起來不錯,但頭顱和骨頭呢?
Well, this is real human skull.
不看穿骨頭,怎麼能看穿大腦呢?」
We ordered it at skullsunlimited.com.
是的,這是真實的人頭骨。
(Laughter)
在 skullsunlimited.com 網站買的。
No kidding.
(笑聲)
But we treat this skull with great respect at our lab and here at TED.
沒開玩笑。
And as you can see,
我們很尊重這頭骨, 不管是在實驗室或 TED 演講現場。
the red light goes right through it.
就如各位所看到的,
Goes through our bones.
紅光透過去了。
So we can go through skull and bones and flesh with just red light.
穿透了我們的骨頭。
Gamma rays and X-rays do that, too, but they cause tumors.
所以只要用紅光就可以 穿透我們的頭骨、骨頭、肉體。
Red light is all around us.
伽馬射線和 X 光也可以, 但會造成腫瘤。
So, using that, I'm going to come back here
我們的生活周遭都是紅外線。
and show you something more useful than making a brain lase.
用那個裝置,我回來這裡向各位展示
We challenged ourselves to see how fine we could focus through brain tissue.
比大腦雷射更有用的東西。
Focusing through this brain,
我們挑戰自己 到底能把腦組織看到多細微。
it was such a fine focus, we put a bare camera die in front of it.
要聚焦看大腦,
And the bare camera die ...
它的聚焦是如此細微, 我們在它前面放了一粒相機裸晶,
Could you turn down the spotlight?
而這粒相機裸晶...
OK, there it is.
可以把現場燈光調暗一點嗎?
Do you see that?
好,看到它了。
Each pixel is two-thousandths of a millimeter wide.
你們看到了嗎?
Two microns.
每個像素的寬度為千分之二毫米,
That means that spot focus -- full width half max --
也就是二微米大小。
is six to eight microns.
意思是,那一點的焦距, 半寬波長(FWHM)
To give you an idea of what that means:
是六到八微米。
that's the diameter of the smallest neuron in the human brain.
為了讓各位更容易了解,
So that means we can focus through skull and brain to a neuron.
這大小相當於人類大腦裡 最小神經元的直徑。
No one has seen this before, we're doing this for the first time here.
意思是,我們能穿透頭骨和大腦 直接聚焦神經元。
It's not impossible.
之前都沒有人看過, 我們是第一次在此展示。
(Applause)
這是辦得到的。
We made it work with our system, so we've made a breakthrough.
(掌聲)
(Laughter)
用我們的系統辦到的, 是重大的突破。
Just to give an idea -- like, that's not just 50 marbles.
(笑聲)
That's billions, trillion of photons,
只是為了讓你知道—— 這可不是僅僅 50 顆彈珠而已,
all falling in line as directed by the hologram,
而是有上億、上兆的光子
to ricochet through densely scattering brain,
全都依照全息裝置的指揮排好了,
and emerge as a focus.
彈跳似地閃過密密麻麻的大腦組織,
It's pretty cool.
最後通通聚焦到一個點。
We're excited about it.
很厲害。
This is an MRI machine.
我們很興奮。
It's a few million dollars, it fills a room,
這是核磁共振儀。
many people have probably been in one.
這一台要好幾百萬美金, 占用一個房間,
I've spent a lot of time in one.
很多人可能用過。
It has a focus of about a millimeter --
我在一台裡面待了很久。
kind of chunky, compared to what I just showed you.
它的影像清晰度大約一毫米,
A system based on our technology could enable dramatically lower cost,
比起我剛展示給各位看的算大。
higher resolution
用我們技術做的系統 成本會大大降低,
and smaller medical imaging.
解析度增高,
So that's what we've started to do.
和較小的醫學成像。
My team and I have built a rig, a lab rig
這是我們已經開始進行的事。
to scan out tissue.
我的團隊和我建了個實驗機台
And here it is in action.
來掃描細胞組織。
We wanted to see how good we could do.
上面是它正在運作的樣子。
We've built this over the last year.
我們想知道能做到多好。
And the result is,
我們去年建造這個。
we're able to find tumors
成果就是,
in this sample --
我們找得到腫瘤,
70 millimeters deep, the light going in here,
在這個七公分厚的樣本裡找得到,
half a millimeter resolution,
光線從這裡進去,
and that's the tumor it found.
0.5 毫米的解析度,
You're probably looking at this,
那是它找到的腫瘤。
like, "Sounds good, but that's kind of a big system.
各位可能在想,
It's smaller than a honking-big MRI machine,
「這系統看起來是不錯, 但還是有點大。
monster MRI machine,
是比超巨大的核磁共振儀、
but can you do something to shrink it down?"
核磁共振大怪物小。
And the answer is:
但你能把它縮得更小嗎? 」
of course.
答案是:
We can replace each big element in that system
當然沒問題。
with a smaller component --
我們可以把這個系統裡的每個大零件
a little integrated circuit,
用小零件取代——
a display chip the size of a child's fingernail.
小型的積體電路,
A bit about my background:
像小朋友指甲一樣大小的顯示晶片。
I've spent the last two decades inventing, prototype-developing
聊一下我的背景:
and then shipping billions of dollars of consumer electronics --
在過去的二十年裡
with full custom chips --
我一直在發明、開發原型,
on the hairy edge of optical physics.
運出了數十億美元的 消費性電子產品,
So my team and I built the big lab rig
有著客製的晶片
to perfect our architecture and test the corner cases
擺在光學物理學產品的邊上。
and really fine-tune our chip designs,
我的團隊和我建了 這個大型實驗機台,
before spending the millions of dollars to fabricate each chip.
來完善我們的作品, 並在極端條件下做測試,
Our new chip inventions slim down the system, speed it up
在花好幾百萬大量製造生產前,
and enable rapid scanning and de-scattering of light
小心翼翼地微調我們的晶片設計。
to see deep into our bodies.
我們發明的新晶片 把系統瘦身了、速度變快了,
This is the third key to enable better, faster and cheaper health care.
可以快速掃描及反散射光線,
This is a mock-up of something that can replace the functionality
好深入檢視我們身體的內部。
of a multimillion-dollar MRI machine
這是實現更好、更快、更便宜 醫療照顧的第三關鍵。
into a consumer electronics price point,
這個實體模型可以取代好幾百萬
that you could wear as a bandage, line a ski hat, put inside a pillow.
核磁共振儀的功能性,
That's what we're building.
且價位可以達到 消費性電子產品的等級,
(Applause)
讓你可以像綁繃帶、戴雪帽, 或放在枕頭裡。
Oh, thanks!
那是我們正在建造的產品。
(Applause)
(掌聲)
So you're probably thinking,
喔,謝謝!
"I get the light going through our bodies.
(掌聲)
I even get the holography de-scattering the light.
你可能會想
But how do we use these new chip inventions, exactly,
「我把光打進了身體 ,
to do the scanning?"
甚至有了全像攝影裝置 來反分散光源 。
Well, we have a sound approach.
但我們到底是如何 使用這個新的晶片產品
No, literally -- we use sound.
來進行掃描的?」
Here, these three discs represent the integrated circuits
我們用聲音,
that we've designed,
沒錯,我們用聲音。
that massively reduce the size of our current bulky system.
此處這三小碟代表 我們設計的積體電路,
One of the spots, one of the chips, emits a sonic ping,
會大規模縮小目前的大型系統。
and it focuses down,
其中一點,一個晶片,會發出聲音,
and then we turn red light on.
聲音會集中往下傳遞,
And the red light that goes through that sonic spot
然後我們把紅燈打開。
changes color slightly,
紅光經過那個聲音點
much like the pitch of the police car siren changes
會稍微改變顏色,
as it speeds past you.
有點像是警笛快速經過你身邊時
So.
所產生的聲音變化現象。
There's this other thing about holography I haven't told you yet,
所以,
that you need to know.
這就是我還沒告訴各位 全息攝影術的另一件事,
Only two beams of exactly the same color can make a hologram.
這個你需要知道。
So, that's the orange light that's coming off of the sonic spot,
只有顏色完全相同的兩條光束 才能產生全息影像。
that's changed color slightly,
所以,從聲音點出來的橘色光,
and we create a glowing disc of orange light
顏色稍微變了,
underneath a neighboring chip
我們在相鄰晶片的下方
and then record a hologram on the camera chip.
建了個發光的橙色光盤,
Like so.
然後相機晶片會記錄全息影像。
From that hologram, we can extract information just about that sonic spot,
就像這樣。
because we filter out all of the red light.
我們可以從全息影像中 抽取與那個聲音點有關的訊息,
Then, we can optionally focus the light back down into the brain
因為我們把所有的紅色光濾掉了。
to stimulate a neuron or part of the brain.
然後,我們可以選擇 將光線聚焦到大腦中,
And then we move on to shift the sonic focus to another spot.
以刺激部分的神經元或大腦。
And that way, spot by spot, we scan out the brain.
接下來轉移聲音焦點到另一個位置。
Our chips decode holograms
用這樣的方式一點一點地掃瞄大腦。
a bit like Rosalind Franklin decoded this iconic image of X-ray diffraction
我們的晶片可以解讀全息影像,
to reveal the structure of DNA for the first time.
這有點像是羅莎琳·富蘭克林 透過解碼 X 光繞射現象
We're doing that electronically with our chips,
第一次解構出 DNA 的結構時那樣。
recording the image and decoding the information,
用我們的晶片,以電子的方式
in a millionth of a second.
記錄圖像並解讀資訊,
We scan fast.
僅僅用了百萬分之一秒。
Our system may be extraordinary at finding blood.
我們的掃描速度很快。
And that's because blood absorbs red light and infrared light.
我們的系統在尋找血液時 可能非比尋常,
Blood is red.
因為血會吸收紅光及紅外線光。
Here's a beaker of blood.
血是紅色的。
I'm going to show you.
這燒杯裡有血液。
And here's our laser, going right through it.
我秀給你看。
It really is a laser, you can see it on the -- there it is.
這是我們的雷射射過去。
In comparison to my pound of flesh,
這真的是雷射,你看,射進去了。
where you can see the light goes everywhere.
跟這肉相比,
So let's see that again, blood.
光散射到各處。
This is really key: blood absorbs light,
我們再看一遍,血。
flesh scatters light.
這就是關鍵:血會吸光,
This is significant,
肉會把光散射掉。
because every tumor bigger than a cubic millimeter or two
這很重要,
has five times the amount of blood as normal flesh.
因為每個大於一、二立方毫米的腫瘤
So with our system, you can imagine detecting cancers early,
圍繞在它周圍的血液 是正常肉體的五倍。
when intervention is easy,
所以可以想像用我們的系統 早期發現癌細胞,
or tracking the size of your tumor as it grows or shrinks.
早期偵測容易治療,
Our system also should be extraordinary at finding out where blood isn't,
或追蹤腫瘤的變大或縮小。
like a clogged artery,
我們的系統尋找缺血流的部位 表現也應該不錯,
or the color change in blood
像是動脈阻塞方面的偵測,
as it carries oxygen versus not carrying oxygen,
或者血液中顏色的變化,
which is a way to measure neural activity.
像是血液是否攜帶氧氣,
There's a saying that "sunlight" is the best disinfectant.
這是測量神經元活動的方法。
It's literally true.
有人說「太陽光」是最好的消毒劑。
Researchers are killing pneumonia in lungs by shining light deep inside of lungs.
真的是這樣。
Our system could enable this noninvasively.
研究人員發現,透過照射太陽光 可以殺死肺深處的癌細胞。
Let me give you three more examples of what this technology can do.
我們的系統能以非侵入式的方式 來達成這樣的效果。
One: stroke.
我再多舉三個例子來說明 這項科技可以為我們做些什麼。
There's two major kinds of stroke:
第一:中風。
the one caused by clogs
中風的原因主要有兩個:
and another caused by rupture.
一個是腦血管堵塞,
If you can determine the type of stroke within an hour or two,
另一個是腦血管破裂。
you can give medication to massively reduce the damage to the brain.
如果你能在一到兩個小時內 判定是哪一種類型的中風,
Get the drug wrong,
就可以服用正確的藥物, 大大地減少腦部受損的危險。
and the patient dies.
吃錯藥,
Today, that means access to an MRI scanner within an hour or two of a stroke.
病人就會完蛋。
Tomorrow, with compact, portable, inexpensive imaging,
意思是現今中風後的一至二小時內 得要用核磁共振儀進行掃描。
every ambulance and every clinic can decode the type of stroke
未來,有了這個小巧、可攜帶, 又不貴的影像成型技術,
and get the right therapy on time.
每一台救護車及每家醫院 都能及時判斷中風的種類,
(Applause)
並採取正確的醫治方式。
Thanks.
(掌聲)
Two:
謝謝。
two-thirds of humanity lacks access to medical imaging.
第二:
Compact, portable, inexpensive medical imaging can save countless lives.
這世上還有三分之二的人 無法取得醫學顯影的醫療服務。
And three:
這小巧、可攜帶又不貴的 醫學影像成型技術能拯救無數性命。
brain-computer communication.
第三:
I've shown here onstage our system focusing through skull and brain
人腦與電腦的溝通。
to the diameter of the smallest neuron.
我在台上已向各位展示 我們的系統可以穿透頭骨
Using light and sound, you can activate or inhibit neurons,
精準地觀測到最小的神經元。
and simultaneously, we can match spec by spec
你可以利用光及聲音 來刺激或抑制神經元的活動;
the resolution of an fMRI scanner,
同時,我們的規格不輸給
which measures oxygen use in the brain.
功能磁共振成像掃描儀,
We do that by looking at the color change in the blood,
可以用來測量腦部的氧氣消耗量。
rather than using a two-ton magnet.
我們藉由觀察血液的顏色變化,
So you can imagine that with fMRI scanners today,
不用一台兩噸重的磁鐵儀器。
we can decode the imagined words, images and dreams of those being scanned.
現今用共振成像掃描儀,
We're working on a system that puts all three of these capabilities
想像我們的技術能解碼 掃描到的文字、圖片、夢境。
into the same system --
我們正在把這三個功能
neural read and write with light and sound,
結合在同一個系統裡,
while simultaneously mapping oxygen use in the brain --
利用光與聲音來讀寫神經元,
all together in a noninvasive portable
同時掃描腦中的含氧量,
that can enable brain-computer communication,
全部集合在非侵入性的可攜裝置裡,
no implants, no surgery, no optional brain surgery required.
可促成人腦與電腦的溝通,
This can do enormous good
不需植入、不需手術, 不用考慮腦部開刀這選項。
for the two billion people that suffer globally with brain disease.
這可以為全球兩百萬個深受
(Applause)
腦部疾病的人帶來很多益處。
People ask me how deep we can go.
(掌聲)
And the answer is: the whole body's in reach.
人們問我能看到多深。
But here's another way to look at it.
答案是:全身。
(Laughter)
這裡有另一個看待的方式。
My whole head just lit up, you want to see it again?
(笑聲)
Audience: Yes!
剛剛我整顆頭亮了, 想要再看一遍嗎?
(Laughter)
觀眾:要!
MLJ: This looks scary, but it's not.
(笑聲)
What's truly scary is not knowing about our bodies,
MLJ:這看起來很可怕 但並不可怕。
our brains and our diseases
真正可怕的是不懂我們的身體、
so we can effectively treat them.
我們的腦、我們的疾病,
This technology can help.
以致未能有效地治療。
Thank you.
這項科技可以幫助我們。
(Applause)
謝謝各位。
Thank you.
(掌聲)
(Applause)
謝謝。
