Placeholder Image

字幕列表 影片播放

  • So, I lead a team at Google that works on machine intelligence;

    譯者: 易帆 余

  • in other words, the engineering discipline of making computers and devices

    我在 Google 帶領 一個團隊做機械智慧;

  • able to do some of the things that brains do.

    換句話說,就是制定一些訓練方法,

  • And this makes us interested in real brains

    讓電腦和裝置能做些大腦做的事。

  • and neuroscience as well,

    而這也讓我們對真實的大腦

  • and especially interested in the things that our brains do

    以及神經科學產生了興趣,

  • that are still far superior to the performance of computers.

    特別是一些我們大腦能做

  • Historically, one of those areas has been perception,

    但電腦仍無法呈現出來的事。

  • the process by which things out there in the world --

    長期以來,機械智慧的 其中一個領域談的就是機械感知,

  • sounds and images --

    它是一種轉化的過程——

  • can turn into concepts in the mind.

    像是把聲音和影像——

  • This is essential for our own brains,

    轉化成心智上的概念。

  • and it's also pretty useful on a computer.

    這是我們大腦必備的能力,

  • The machine perception algorithms, for example, that our team makes,

    這個能力對電腦來說也很有用。

  • are what enable your pictures on Google Photos to become searchable,

    所謂的機械感知演算法, 像是我們團隊做的,

  • based on what's in them.

    能讓你 Google 相簿裡的照片

  • The flip side of perception is creativity:

    根據照片裡的東西 把它們變成可以被搜尋的資料。

  • turning a concept into something out there into the world.

    感知的另一面是創意:

  • So over the past year, our work on machine perception

    把概念轉化成另一種東西。

  • has also unexpectedly connected with the world of machine creativity

    所以過去幾年, 我們團隊在機器感知上的努力,

  • and machine art.

    已經可以把創意與

  • I think Michelangelo had a penetrating insight

    機器藝術結合在一起。

  • into to this dual relationship between perception and creativity.

    我覺得米開朗基羅對「感知」 與「創意」這兩者之間的關係

  • This is a famous quote of his:

    有一種很透析的看法。

  • "Every block of stone has a statue inside of it,

    他有一句名言:

  • and the job of the sculptor is to discover it."

    「每一塊石頭裡都藏著一座雕像,

  • So I think that what Michelangelo was getting at

    等待雕刻家將它雕塑出來。」

  • is that we create by perceiving,

    所以我覺得米開朗基羅 當時的體悟是:

  • and that perception itself is an act of imagination

    我們的「創意」來自「感知」,

  • and is the stuff of creativity.

    而感知本身就是一個想像行為

  • The organ that does all the thinking and perceiving and imagining,

    及創意的來源。

  • of course, is the brain.

    人體中有一個器官 能做出思考、感受和想像,

  • And I'd like to begin with a brief bit of history

    當然,那就是我們的大腦。

  • about what we know about brains.

    我想先簡單地來談一談

  • Because unlike, say, the heart or the intestines,

    我們對大腦認知的歷史。

  • you really can't say very much about a brain by just looking at it,

    因為大腦不像我們的心臟或腸道,

  • at least with the naked eye.

    你不能光用看的來瞭解大腦,

  • The early anatomists who looked at brains

    光靠肉眼根本看不出個所以然來。

  • gave the superficial structures of this thing all kinds of fanciful names,

    早期研究大腦的解剖學家,

  • like hippocampus, meaning "little shrimp."

    在大腦表皮結構上 取了許多稀奇古怪的名字,

  • But of course that sort of thing doesn't tell us very much

    例如海馬體,意思是「小蝦子」。

  • about what's actually going on inside.

    當然,這樣的命名方式

  • The first person who, I think, really developed some kind of insight

    並沒有讓我們對 大腦的認識有太多的幫助。

  • into what was going on in the brain

    我認為,第一個有真正深入了解

  • was the great Spanish neuroanatomist, Santiago Ramón y Cajal,

    大腦如何運作的,

  • in the 19th century,

    是偉大的西班牙神經解剖學家 桑地牙哥·拉蒙卡哈,

  • who used microscopy and special stains

    他在十九世紀,

  • that could selectively fill in or render in very high contrast

    就已經開始用顯微鏡和特殊染劑

  • the individual cells in the brain,

    把大腦裡的特定細胞篩選出來染色,

  • in order to start to understand their morphologies.

    或以強烈的對比色來觀察細胞,

  • And these are the kinds of drawings that he made of neurons

    這樣做,是為了瞭解 它們的形態結構。

  • in the 19th century.

    這些是他在十九世紀時

  • This is from a bird brain.

    畫的神經細胞圖,

  • And you see this incredible variety of different sorts of cells,

    這一張是鳥的大腦。

  • even the cellular theory itself was quite new at this point.

    但當時已經可以看到 各式各樣不同的細胞圖片,

  • And these structures,

    即使細胞的原理 在當時是個相當新穎的概念。

  • these cells that have these arborizations,

    這些結構,

  • these branches that can go very, very long distances --

    這些樹枝狀的細胞結構,

  • this was very novel at the time.

    可以延伸到相當相當長──

  • They're reminiscent, of course, of wires.

    在當時來講, 這樣的發現算是相當神奇了。

  • That might have been obvious to some people in the 19th century;

    當然,它們也會讓人聯想到電線,

  • the revolutions of wiring and electricity were just getting underway.

    這對 19 世紀的人來說, 這樣的比喻可能比較恰當,

  • But in many ways,

    因為當時電線和電力的變革 正如火如荼的進行。

  • these microanatomical drawings of Ramón y Cajal's, like this one,

    但就很多方面來說,

  • they're still in some ways unsurpassed.

    像拉蒙卡哈這樣的顯微鏡解剖圖

  • We're still more than a century later,

    現在看來還是很厲害。

  • trying to finish the job that Ramón y Cajal started.

    但我們卻在一個世紀後,

  • These are raw data from our collaborators

    才想試著去完成 當年拉蒙卡哈的研究。

  • at the Max Planck Institute of Neuroscience.

    這些原始資料,來自我們

  • And what our collaborators have done

    馬克斯·普朗克 神經科學機構的合作夥伴。

  • is to image little pieces of brain tissue.

    而我們的合作夥伴的工作就是

  • The entire sample here is about one cubic millimeter in size,

    把大腦組織切成 一小片一小片的圖像。

  • and I'm showing you a very, very small piece of it here.

    整個樣本的大小 大約只有 1 立方毫米,

  • That bar on the left is about one micron.

    我展示給各位看的只有小小的一片。

  • The structures you see are mitochondria

    你可以看到, 左邊的長度標誌僅有一微米。

  • that are the size of bacteria.

    各位現在看到的結構是粒線體,

  • And these are consecutive slices

    大小跟細菌一樣。

  • through this very, very tiny block of tissue.

    這些連續切片圖,

  • Just for comparison's sake,

    是由一塊很小的組織中 一片片切出來的。

  • the diameter of an average strand of hair is about 100 microns.

    舉個例子做比較,

  • So we're looking at something much, much smaller

    一根頭髮的直徑 大約有 100 微米。

  • than a single strand of hair.

    我們在研究的

  • And from these kinds of serial electron microscopy slices,

    是比一根頭髮還更細更小的東西。

  • one can start to make reconstructions in 3D of neurons that look like these.

    而這一系列的電子顯微鏡切片圖像,

  • So these are sort of in the same style as Ramón y Cajal.

    可以組成像這樣的 神經元 3D 立體成像。

  • Only a few neurons lit up,

    這些和拉蒙卡哈 當年的研究相去不遠。

  • because otherwise we wouldn't be able to see anything here.

    但只有幾個神經元可以打光,

  • It would be so crowded,

    否則我們會看不到東西。

  • so full of structure,

    因為空間太壅擠、

  • of wiring all connecting one neuron to another.

    結構太複雜了,

  • So Ramón y Cajal was a little bit ahead of his time,

    神經元蜿蜒地一個接著一個。

  • and progress on understanding the brain

    所以,拉蒙卡哈在當時 也算是走在時代的尖端,

  • proceeded slowly over the next few decades.

    但在那之後的幾十年,

  • But we knew that neurons used electricity,

    人類對大腦的認識卻相當緩慢。

  • and by World War II, our technology was advanced enough

    但我們已經知道 神經元是利用電子傳遞訊號,

  • to start doing real electrical experiments on live neurons

    到第二次世界大戰前, 我們的科技已經進步到

  • to better understand how they worked.

    可以在活體神經元上做電子實驗,

  • This was the very same time when computers were being invented,

    用來更好地理解它們是如何運作的。

  • very much based on the idea of modeling the brain --

    這也是電腦被發明出來的時間,

  • of "intelligent machinery," as Alan Turing called it,

    當初有一個模擬人腦的基礎想法——

  • one of the fathers of computer science.

    是由艾倫·圖靈所提出, 他稱之為「智能機械」,

  • Warren McCulloch and Walter Pitts looked at Ramón y Cajal's drawing

    他是計算機科學之父之一。

  • of visual cortex,

    當時沃倫麥卡洛克和華特彼特斯 (人工神經科學家)

  • which I'm showing here.

    看到的視覺皮質圖,

  • This is the cortex that processes imagery that comes from the eye.

    就是上面這張拉蒙卡哈的圖片。

  • And for them, this looked like a circuit diagram.

    這個皮質層是負責把 眼睛傳來的訊號轉換成圖像。

  • So there are a lot of details in McCulloch and Pitts's circuit diagram

    他們當時發現, 它看起來像是一張電路圖。

  • that are not quite right.

    雖然麥卡洛克和彼特斯

  • But this basic idea

    在電路圖上有很多細節不太正確,

  • that visual cortex works like a series of computational elements

    但這樣的基礎概念,

  • that pass information one to the next in a cascade,

    視覺皮層的工作原理

  • is essentially correct.

    像一系列的計算子 在串聯的電路圖上傳遞著資訊,

  • Let's talk for a moment

    這樣的概念卻是相當正確的。

  • about what a model for processing visual information would need to do.

    我們稍微聊一下,

  • The basic task of perception

    產生視覺資訊的模型, 需要做哪些事情。

  • is to take an image like this one and say,

    覺察力的基本任務就是

  • "That's a bird,"

    比如說,看到這一張圖片,

  • which is a very simple thing for us to do with our brains.

    就要會判斷出,「這是一隻鳥」,

  • But you should all understand that for a computer,

    這對我們大腦來說是很簡單的任務。

  • this was pretty much impossible just a few years ago.

    但各位要知道,這對電腦來說

  • The classical computing paradigm

    在幾年前根本是不可能的事。

  • is not one in which this task is easy to do.

    傳統的計算模式

  • So what's going on between the pixels,

    根本不太容易跑出來這樣的任務。

  • between the image of the bird and the word "bird,"

    所以,像素、

  • is essentially a set of neurons connected to each other

    鳥圖與文字之間,

  • in a neural network,

    一定要有一組彼此連結的神經元

  • as I'm diagramming here.

    在神經網路內相互作用著,

  • This neural network could be biological, inside our visual cortices,

    就像我這張示意圖。

  • or, nowadays, we start to have the capability

    這張神經網路圖 就像我們的視覺皮質運作原理。

  • to model such neural networks on the computer.

    如今,我們已經有能力

  • And I'll show you what that actually looks like.

    用電腦來模擬這樣的神經網路。

  • So the pixels you can think about as a first layer of neurons,

    接下來我向各位展示一下, 實際的操作大概是怎樣。

  • and that's, in fact, how it works in the eye --

    圖片的像素你可以把它想像成是 第一層的神經元,

  • that's the neurons in the retina.

    實際上,就是眼睛裡面 像素的呈現方式,

  • And those feed forward

    像素是透過 視網膜上的神經元做傳遞。

  • into one layer after another layer, after another layer of neurons,

    而這些前饋資訊

  • all connected by synapses of different weights.

    會一層一層地傳遞到下一層神經元,

  • The behavior of this network

    全部由不同的「突觸權重」所連結。

  • is characterized by the strengths of all of those synapses.

    神經網路的行為

  • Those characterize the computational properties of this network.

    全都由這些突觸的強度所控制。

  • And at the end of the day,

    它們決定了神經網路的計算模式。

  • you have a neuron or a small group of neurons

    最後,

  • that light up, saying, "bird."

    會有一個或一小群的 神經元發出訊號,

  • Now I'm going to represent those three things --

    辨識出該圖片就是,「鳥」。

  • the input pixels and the synapses in the neural network,

    我現在要來解釋一下這三個元素——

  • and bird, the output --

    輸入的「像素」、 神經網路裡的「突觸」、

  • by three variables: x, w and y.

    還有「鳥」這個輸出的字元—— 它們是如何運作的。

  • There are maybe a million or so x's --

    它們是由三種變數所組成, x、w 和 y。

  • a million pixels in that image.

    圖片中可能有一百多萬個 x ——

  • There are billions or trillions of w's,

    100 多萬個像素。

  • which represent the weights of all these synapses in the neural network.

    而 w 可能有數十億或好幾兆個,

  • And there's a very small number of y's,

    它們代表著神經網路中 各個突觸的權重。

  • of outputs that that network has.

    而這個網路能輸出的 y

  • "Bird" is only four letters, right?

    只有少數幾個。

  • So let's pretend that this is just a simple formula,

    「bird」只有四個字母,對吧?

  • x "x" w = y.

    我們假設它的原理是 一個簡單的公式,

  • I'm putting the times in scare quotes

    x 「乘以」 w = y

  • because what's really going on there, of course,

    我把乘法符號用引號標示起來

  • is a very complicated series of mathematical operations.

    因為它其實是一個

  • That's one equation.

    非常複雜的數學運算概念。

  • There are three variables.

    這個方程式

  • And we all know that if you have one equation,

    有三個變數,

  • you can solve one variable by knowing the other two things.

    我們都知道,如果你想要 解開這個方程式,

  • So the problem of inference,

    可以從兩個已知數 交叉算出未知的數。

  • that is, figuring out that the picture of a bird is a bird,

    所以要推斷出

  • is this one:

    圖片中的影像是一隻鳥,

  • it's where y is the unknown and w and x are known.

    可以用這種方式得知:

  • You know the neural network, you know the pixels.

    y 是未知數,而 w 和 x 是已知數。

  • As you can see, that's actually a relatively straightforward problem.

    已知神經網路和圖片像素,

  • You multiply two times three and you're done.

    其實可以很直接的就得到答案,

  • I'll show you an artificial neural network

    2x3=6,就做完了。

  • that we've built recently, doing exactly that.

    我向各位展示一個

  • This is running in real time on a mobile phone,

    我們最近做的人工神經網路,

  • and that's, of course, amazing in its own right,

    它可以在手機上做及時的操作,

  • that mobile phones can do so many billions and trillions of operations

    當然,手機的運算能力相當驚人,

  • per second.

    手機每秒

  • What you're looking at is a phone

    可以做出數十億至上兆次的運算。

  • looking at one after another picture of a bird,

    你現在看到的是一隻手機

  • and actually not only saying, "Yes, it's a bird,"

    正對著一張張的鳥圖拍照,

  • but identifying the species of bird with a network of this sort.

    手機不但可以正確的說出, 「是的,這是一隻鳥。」

  • So in that picture,

    還能透過神經網路分類 分辨出這是哪一種鳥。

  • the x and the w are known, and the y is the unknown.

    所以,在這些圖片上,

  • I'm glossing over the very difficult part, of course,

    x 和 w 是已知,而 y 是未知。

  • which is how on earth do we figure out the w,

    我現在來解釋一下這個 最困難的 「w」,

  • the brain that can do such a thing?

    我們到底是如何算出來的?

  • How would we ever learn such a model?

    為什麼大腦可以做出這樣的判斷?

  • So this process of learning, of solving for w,

    我們到底是如何學到 這樣的認知模式的?

  • if we were doing this with the simple equation

    這個學習的過程, 是一個求解 w 的過程,

  • in which we think about these as numbers,

    如果我們要解這個一次方程式,

  • we know exactly how to do that: 6 = 2 x w,

    當它們都是數字時,

  • well, we divide by two and we're done.

    我們都知道如何解 6=2 x w,

  • The problem is with this operator.

    我們只要把 6 除以 2 就可以得到答案。

  • So, division --

    問題在於這個運算符號,

  • we've used division because it's the inverse to multiplication,

    除法這個符號——

  • but as I've just said,

    我們會用除法的方式求解, 是因為它跟乘法相反,

  • the multiplication is a bit of a lie here.

    但就如同我剛剛提到的,

  • This is a very, very complicated, very non-linear operation;

    乘法在這裡有點像是個幌子。

  • it has no inverse.

    這是非常非常複雜的概念, 它們是「非線性運算」的概念;

  • So we have to figure out a way to solve the equation

    無法直接用除的求解。

  • without a division operator.

    所以,我們要另外 找個方法來解方程式,

  • And the way to do that is fairly straightforward.

    而不能直接用除的。

  • You just say, let's play a little algebra trick,

    方法相當簡單,

  • and move the six over to the right-hand side of the equation.

    可以說,我們只用了點 代數的小技巧,

  • Now, we're still using multiplication.

    將 6 移動到等號的右邊。

  • And that zero -- let's think about it as an error.

    如此我們就可以繼續用乘法來運算。

  • In other words, if we've solved for w the right way,

    而等號左邊的零—— 我們把它想像成是誤差。

  • then the error will be zero.

    換言之,如果要解出 w,

  • And if we haven't gotten it quite right,

    誤差就要變成 0。

  • the error will be greater than zero.

    如果我們沒找到答案

  • So now we can just take guesses to minimize the error,

    誤差會永遠大於 0。

  • and that's the sort of thing computers are very good at.

    所以,我們現在 只能用猜的來縮小誤差,

  • So you've taken an initial guess:

    而這就是電腦非常擅長的地方。

  • what if w = 0?

    所以,你會從頭開始猜:

  • Well, then the error is 6.

    假設 w=0

  • What if w = 1? The error is 4.

    那誤差會等於6

  • And then the computer can sort of play Marco Polo,

    但假如 w=1 呢?誤差等於 4。

  • and drive down the error close to zero.

    接下來電腦有點像是在玩 馬可波羅探索遊戲,

  • As it does that, it's getting successive approximations to w.

    探索到誤差接近零為止。

  • Typically, it never quite gets there, but after about a dozen steps,

    當它一直探索到零, 那麼 w 就解出來了。

  • we're up to w = 2.999, which is close enough.

    原則上,它會不停探索直到接近零, 但大約經過多次步驟後,

  • And this is the learning process.

    我們就能得出 w=2.999, 相當接近了。

  • So remember that what's been going on here

    這就是電腦學習的過程。

  • is that we've been taking a lot of known x's and known y's

    回想一下剛剛發生了什麼事情,

  • and solving for the w in the middle through an iterative process.

    我們有很多已知的 x 和 y,

  • It's exactly the same way that we do our own learning.

    透過重複迭代的過程解出了 w。

  • We have many, many images as babies

    而這就是我們人類學習的過程,

  • and we get told, "This is a bird; this is not a bird."

    我們從小看了很多圖片

  • And over time, through iteration,

    被告知「這是鳥」,「這不是鳥」;

  • we solve for w, we solve for those neural connections.

    經過了一段時間,不停地重複,

  • So now, we've held x and w fixed to solve for y;

    我們解出了 w, 產生了神經元的連結關係。

  • that's everyday, fast perception.

    所以現在,我們的 x 和 w 是固定數,可以解出 y;

  • We figure out how we can solve for w,

    這就是我們人類每天 經常性的快速直覺判斷。

  • that's learning, which is a lot harder,

    我們搞懂了如何解出 w,

  • because we need to do error minimization,

    而學習本身是一條相當艱辛的路程,

  • using a lot of training examples.

    因為為了讓誤差最小化,

  • And about a year ago, Alex Mordvintsev, on our team,

    我們必須使用很多的訓練樣本。

  • decided to experiment with what happens if we try solving for x,

    約一年前,我們團隊的 艾力克斯摩文斯夫

  • given a known w and a known y.

    決定做個實驗,

  • In other words,

    看看如果我們試著給出了 w 和 y, 解出來的 x 會變什麼樣。

  • you know that it's a bird,

    換句話說,

  • and you already have your neural network that you've trained on birds,

    電腦知道它是一隻鳥,

  • but what is the picture of a bird?

    電腦有你給它訓練出來 辨識鳥圖片的神經網路,

  • It turns out that by using exactly the same error-minimization procedure,

    但對電腦而言,鳥是怎樣的圖像?

  • one can do that with the network trained to recognize birds,

    原來,使用一模一樣的 「誤差最小化」程序

  • and the result turns out to be ...

    以及訓練出來 用來辨識鳥的神經網路,

  • a picture of birds.

    你就能辨識出……

  • So this is a picture of birds generated entirely by a neural network

    這是一張鳥圖,

  • that was trained to recognize birds,

    所以,這是一張完全由

  • just by solving for x rather than solving for y,

    訓練辨認鳥的神經網路 自行創造出來的鳥圖,

  • and doing that iteratively.

    只要透過不斷地重複解出 x,

  • Here's another fun example.

    而不是解 y 就可以了。

  • This was a work made by Mike Tyka in our group,

    這裡有另一個有趣的範例。

  • which he calls "Animal Parade."

    我們團隊裡的 另外一位組員麥克泰卡,

  • It reminds me a little bit of William Kentridge's artworks,

    他稱這些畫為《動物大遊行》。

  • in which he makes sketches, rubs them out,

    這讓我有點回想起了 威廉肯特基的作品,

  • makes sketches, rubs them out,

    他畫好素描後,擦掉它,

  • and creates a movie this way.

    然後反覆地畫、反覆地擦

  • In this case,

    透過這樣的方式, 創造出了一部影片。

  • what Mike is doing is varying y over the space of different animals,

    在這個展示裡,

  • in a network designed to recognize and distinguish

    麥可做的就是把不同動物的 y ,

  • different animals from each other.

    透過設計好的神經網路,

  • And you get this strange, Escher-like morph from one animal to another.

    彼此辨認並分別出不一樣的動物。

  • Here he and Alex together have tried reducing

    如此,你就能得到一張像艾雪一樣的 不同動物的變體圖像。

  • the y's to a space of only two dimensions,

    這一張是他和艾力克斯一起完成的,

  • thereby making a map out of the space of all things

    他們試著減少 y 的數量, 將這些圖案丟到一個 2D 平面上,

  • recognized by this network.

    透過這個網路的辨識,

  • Doing this kind of synthesis

    創造出了這一張有各種動物的地圖。

  • or generation of imagery over that entire surface,

    要做出這樣的綜合體,

  • varying y over the surface, you make a kind of map --

    或透過整張圖面產出圖像,

  • a visual map of all the things the network knows how to recognize.

    你只要在圖面上給出各式各樣的 y , 你就能做出一張地圖來——

  • The animals are all here; "armadillo" is right in that spot.

    一張由神經網路辨識出的視覺地圖。

  • You can do this with other kinds of networks as well.

    所有動物都會在這上面, 犰狳就在圖上這個點。

  • This is a network designed to recognize faces,

    你也可以透過不同的神經網路, 做出類似這樣的作品,

  • to distinguish one face from another.

    這一張由辨識臉的神經網路

  • And here, we're putting in a y that says, "me,"

    所做出來的作品,

  • my own face parameters.

    這一張是用「我」當作 y , 所做出來的圖畫,

  • And when this thing solves for x,

    用我的臉當參數。

  • it generates this rather crazy,

    當電腦解出 x 後,

  • kind of cubist, surreal, psychedelic picture of me

    它就畫出了這一張相當瘋狂、

  • from multiple points of view at once.

    有點像立體派藝術、 超現實、迷幻效果的我,

  • The reason it looks like multiple points of view at once

    同一張圖卻有不同的視角。

  • is because that network is designed to get rid of the ambiguity

    而會有這種「同一張圖 不同視角」的感覺,

  • of a face being in one pose or another pose,

    是因為這個神經網路的設計,

  • being looked at with one kind of lighting, another kind of lighting.

    可以將不同姿勢臉之間的 模糊地帶移除掉,

  • So when you do this sort of reconstruction,

    透過觀察不同的光源就可以做到。

  • if you don't use some sort of guide image

    所以,當你重新製作圖像時,

  • or guide statistics,

    如果你沒有使用指導圖,

  • then you'll get a sort of confusion of different points of view,

    或特定的統計資料,

  • because it's ambiguous.

    那你就能得到來自 不同角度的混合體圖像,

  • This is what happens if Alex uses his own face as a guide image

    因為它是模糊的。

  • during that optimization process to reconstruct my own face.

    所以如果艾力克斯 用他自己的臉當作指導圖

  • So you can see it's not perfect.

    在優化過程中重新建造我的臉, 就會產生這樣的圖像。

  • There's still quite a lot of work to do

    各位可以看到, 這作品還不是很完美,

  • on how we optimize that optimization process.

    在圖像優化的過程方面,

  • But you start to get something more like a coherent face,

    還有很多工作要做。

  • rendered using my own face as a guide.

    但如果用我的臉當指導圖,

  • You don't have to start with a blank canvas

    就能漸漸地顯現出比較 條理分明的臉。

  • or with white noise.

    你不需要從一張空白的畫布

  • When you're solving for x,

    或用白雜訊畫起。

  • you can begin with an x, that is itself already some other image.

    當你解出 x 後,

  • That's what this little demonstration is.

    你就可以從 x 開始畫起, 因為它本身就有一些圖像。

  • This is a network that is designed to categorize

    這個小小的展示 說明了它的運作原理。

  • all sorts of different objects -- man-made structures, animals ...

    這個網路是設計用來 分辨各種不同的物體,

  • Here we're starting with just a picture of clouds,

    像是人造結構、動物……等。

  • and as we optimize,

    這一張畫我們是從 雲朵的圖像開始畫起的,

  • basically, this network is figuring out what it sees in the clouds.

    當我們把它優化後,

  • And the more time you spend looking at this,

    基本上,這個神經網路 正在搞懂它在雲朵中看見了什麼。

  • the more things you also will see in the clouds.

    當你看得越久,

  • You could also use the face network to hallucinate into this,

    你就能在雲層中看得越多。

  • and you get some pretty crazy stuff.

    你也可以運用人臉網路 讓它產生幻覺,

  • (Laughter)

    然後就會跑出相當瘋狂的畫作。

  • Or, Mike has done some other experiments

    (笑聲)

  • in which he takes that cloud image,

    或者,麥可已經有作出 一些其它的實驗,

  • hallucinates, zooms, hallucinates, zooms hallucinates, zooms.

    他用那張雲朵的圖像,

  • And in this way,

    使電腦產生幻覺、然後放大、 產生幻覺、再放大。

  • you can get a sort of fugue state of the network, I suppose,

    用這樣的方式,

  • or a sort of free association,

    我在想,你就能得到一種 像是在神遊狀態的網路,

  • in which the network is eating its own tail.

    或者像是一種無拘束的聯想,

  • So every image is now the basis for,

    彷彿神經網路正在吃著自己的尾巴。

  • "What do I think I see next?

    所以每一張圖像基本上像是正在想:

  • What do I think I see next? What do I think I see next?"

    「我接下來會看到什麼?

  • I showed this for the first time in public

    接下來會看到什麼? 接下來會看到什麼?」

  • to a group at a lecture in Seattle called "Higher Education" --

    我第一次在一個 公眾場合上展示這個影片,

  • this was right after marijuana was legalized.

    是在西雅圖的「高等教育」 機構做演說時展示的,

  • (Laughter)

    當時剛好是大麻剛合法化的時候。

  • So I'd like to finish up quickly

    (笑聲)

  • by just noting that this technology is not constrained.

    所以,我快速總結一下,

  • I've shown you purely visual examples because they're really fun to look at.

    這項技術並不會受到約束。

  • It's not a purely visual technology.

    我剛剛展示的是純粹的視覺範例, 因為觀察它的變化,真的很好玩。

  • Our artist collaborator, Ross Goodwin,

    它不單只有視覺科技。

  • has done experiments involving a camera that takes a picture,

    我們的藝術合作者,羅斯谷穎 已經做了一些實驗,

  • and then a computer in his backpack writes a poem using neural networks,

    他用相機拍了一張照片,

  • based on the contents of the image.

    然後他背包裡的電腦 會根據圖片上的內容,

  • And that poetry neural network has been trained

    透過神經網路,創作出一首詩。

  • on a large corpus of 20th-century poetry.

    這個會作詩的神經網路

  • And the poetry is, you know,

    是透過大量 20 世紀的詩集 所訓練出來的,

  • I think, kind of not bad, actually.

    而做出來的詩,

  • (Laughter)

    實際上,我覺得還得不錯。

  • In closing,

    (笑聲)

  • I think that per Michelangelo,

    整體而言,

  • I think he was right;

    我在想,米開朗基羅,

  • perception and creativity are very intimately connected.

    他是對的;

  • What we've just seen are neural networks

    感知和創意的關係是相當緊密的。

  • that are entirely trained to discriminate,

    我們剛剛看的神經網路,

  • or to recognize different things in the world,

    它們是被訓練出來分辯

  • able to be run in reverse, to generate.

    或辨認世界上不同的東西,

  • One of the things that suggests to me

    也可以反過來,自行創作出東西來。

  • is not only that Michelangelo really did see

    而我從中所得到的

  • the sculpture in the blocks of stone,

    不僅有米開朗基羅的啟發:

  • but that any creature, any being, any alien

    「看見石頭裡的雕像」,

  • that is able to do perceptual acts of that sort

    還有任何能做出感知活動的 生物、生命、外來物種

  • is also able to create

    都能透過這樣的方式

  • because it's exactly the same machinery that's used in both cases.

    被呈現並創造出來,

  • Also, I think that perception and creativity are by no means

    因為這兩者與剛才舉的例子 都有著相同的機制。

  • uniquely human.

    我也認為,感知及創意

  • We start to have computer models that can do exactly these sorts of things.

    不是只有我們人類獨有。

  • And that ought to be unsurprising; the brain is computational.

    我們已經有電腦模式 可以做出相當類似的事。

  • And finally,

    所以不需要感到驚訝; 因為大腦是會運算的。

  • computing began as an exercise in designing intelligent machinery.

    最後,我要說的是,

  • It was very much modeled after the idea

    設計智能機器已經開始成為 電腦界的活動。

  • of how could we make machines intelligent.

    在如何讓機器更智能的領域方面,

  • And we finally are starting to fulfill now

    已經有很多的模式產生。

  • some of the promises of those early pioneers,

    我們終於開始

  • of Turing and von Neumann

    完成一些早期前輩們

  • and McCulloch and Pitts.

    像是圖靈、馮諾伊曼、

  • And I think that computing is not just about accounting

    馬庫洛奇和皮斯的期望。

  • or playing Candy Crush or something.

    而我也認為電腦不是只有拿來計算

  • From the beginning, we modeled them after our minds.

    或玩玩 Candy Crush 而已,

  • And they give us both the ability to understand our own minds better

    回到初衷,我們想要的 是讓電腦能仿效人腦。

  • and to extend them.

    它不僅讓我們更了解了人類的心智,

  • Thank you very much.

    並讓我們獲得延伸發展心智的能力。

  • (Applause)

    非常感謝大家。

So, I lead a team at Google that works on machine intelligence;

譯者: 易帆 余

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 神經 網路 大腦 圖像 神經元

【TED】Blaise Agüera y Arcas:計算機如何學會創新(How computers are learning to be creative | Blaise Agüera y Arcas)。 (【TED】Blaise Agüera y Arcas: How computers are learning to be creative (How computers are learning to be creative | Blaise Agüera y Arcas))

  • 55 7
    Zenn 發佈於 2021 年 01 月 14 日
影片單字