Placeholder Image

字幕列表 影片播放

  • My students and I work on very tiny robots.

    我的學生們和我致力於建造 微型的機器人,

  • Now, you can think of these as robotic versions

    你們可以將其想像為機器人版本的

  • of something that you're all very familiar with: an ant.

    一種你們都很熟悉的生物,螞蟻。

  • We all know that ants and other insects at this size scale

    我們都知道, 螞蟻和其它這般大小昆蟲

  • can do some pretty incredible things.

    能夠做到一些令人十分驚奇的事情

  • We've all seen a group of ants, or some version of that,

    比如,我們都見識過一群螞蟻 或者類似的昆蟲

  • carting off your potato chip at a picnic, for example.

    在野餐時搬走你的薯片。

  • But what are the real challenges of engineering these ants?

    但是設計這些螞蟻機器人的 真正難處在哪裡呢?

  • Well, first of all, how do we get the capabilities of an ant

    首先,我們如何能夠讓螞蟻大小的機器人

  • in a robot at the same size scale?

    獲得螞蟻所擁有的能力呢?

  • Well, first we need to figure out how to make them move

    我們首先需要弄清楚

  • when they're so small.

    如何讓這麼小型的機器人動起來。

  • We need mechanisms like legs and efficient motors

    我們需要諸如腿的機械裝置 以及高效的馬達

  • in order to support that locomotion,

    來支持機器人的移動,

  • and we need the sensors, power and control

    我們還需要感應器, 電源和操控系統

  • in order to pull everything together in a semi-intelligent ant robot.

    來集中所有零部件到 一個半智能的螞蟻機器人中。

  • And finally, to make these things really functional,

    最後,為了讓這些零部件真正運作起來,

  • we want a lot of them working together in order to do bigger things.

    我們希望能有大批量 這樣的機器人一起協作,來完成更偉大的任務。

  • So I'll start with mobility.

    所以,我將從移動性開始講起。

  • Insects move around amazingly well.

    昆蟲擁有令人驚奇的移動能力。

  • This video is from UC Berkeley.

    這段影片來自加州大學伯克萊分校,

  • It shows a cockroach moving over incredibly rough terrain

    展現了一隻蟑螂爬過 一段相當複雜的路段,

  • without tipping over,

    卻沒有跌倒,

  • and it's able to do this because its legs are a combination of rigid materials,

    而牠能做到這一點是因為牠的腿由剛性材料組合而成,

  • which is what we traditionally use to make robots,

    也就是我們傳統用於製造機器人

  • and soft materials.

    和軟物質的材料。

  • Jumping is another really interesting way to get around when you're very small.

    而體型很小時, 跳躍則是另一種十分有趣的移動方式。

  • So these insects store energy in a spring and release that really quickly

    比如說,這些昆蟲在彈簧中儲存能量 然後快速地釋放出來

  • to get the high power they need to jump out of water, for example.

    以獲得牠們跳出水面所需要的高能量。

  • So one of the big contributions from my lab

    因此,我的實驗室 所做出的最大的貢獻之一,

  • has been to combine rigid and soft materials

    就是將剛性材料和軟物質

  • in very, very small mechanisms.

    在非常小的的機械裝置中結合。

  • So this jumping mechanism is about four millimeters on a side,

    這個跳躍機械裝置的一面 大約是四毫米長,

  • so really tiny.

    非常微小。

  • The hard material here is silicon, and the soft material is silicone rubber.

    此處使用的硬材料是矽, 軟材料則是矽膠。

  • And the basic idea is that we're going to compress this,

    這背後基本的想法就是 我們要壓縮這一塊

  • store energy in the springs, and then release it to jump.

    然後在彈簧中儲存能量再釋放, 讓它跳躍起來。

  • So there's no motors on board this right now, no power.

    所以現在這塊板上沒有馬達和電源。

  • This is actuated with a method that we call in my lab

    而這一裝置的實現原理 在我的實驗室中被稱為

  • "graduate student with tweezers." (Laughter)

    “拿著鑷子的研究生” (笑)

  • So what you'll see in the next video

    所以,你將在下一條影片中看到的

  • is this guy doing amazingly well for its jumps.

    是這個跳躍能力很出色的小傢伙。

  • So this is Aaron, the graduate student in question, with the tweezers,

    這位是艾倫,那個拿著鑷子的研究生,

  • and what you see is this four-millimeter-sized mechanism

    而你將看到的是這個四毫米長的機械裝置

  • jumping almost 40 centimeters high.

    跳躍到幾乎40釐米的高度。

  • That's almost 100 times its own length.

    大約是它自己長度的100倍。

  • And it survives, bounces on the table,

    而且它倖存了下來,在桌面上彈跳著,

  • it's incredibly robust, and of course survives quite well until we lose it

    十分強大,並且存活得很好直到我們找不到它的时候,

  • because it's very tiny.

    因為它實在太小了。

  • Ultimately, though, we want to add motors to this too,

    不過我們最終還是想要 在這個裝置中加上馬達,

  • and we have students in the lab working on millimeter-sized motors

    而我們的實驗室裡也有學生 正在研究毫米尺寸的馬達

  • to eventually integrate onto small, autonomous robots.

    以最終將它裝到 小型的自動機器人身上

  • But in order to look at mobility and locomotion at this size scale to start,

    但是為了觀察如此微小的裝置的 機動性和移動能力,

  • we're cheating and using magnets.

    我們“作弊”並使用了磁鐵。

  • So this shows what would eventually be part of a micro-robot leg,

    這條影片展現了最终將會成為 微型機器人的腿的那一部份,

  • and you can see the silicone rubber joints

    而你可以看到矽膠製成的接合點

  • and there's an embedded magnet that's being moved around

    以及一塊被外在磁場控制而 四

  • by an external magnetic field.

    處移動的嵌入式磁鐵。

  • So this leads to the robot that I showed you earlier.

    這就引向了我之前 為大家展示的那個機器人。

  • The really interesting thing that this robot can help us figure out

    真正有趣的是,這個機器人 能帮助我們弄清楚

  • is how insects move at this scale.

    這樣規模的昆蟲是如何移動的。

  • We have a really good model for how everything

    我們有一個很棒的模型來理解所有大小事物的移動方式,

  • from a cockroach up to an elephant moves.

    小到一隻蟑螂,大到一隻大象。

  • We all move in this kind of bouncy way when we run.

    跑步時,我們都以這種彈跳的方式移動。

  • But when I'm really small, the forces between my feet and the ground

    但是當我的體型十分微小時, 我雙腳和地面之間的力量

  • are going to affect my locomotion a lot more than my mass,

    會大大影響我的移動, 遠大於影響我的質量,

  • which is what causes that bouncy motion.

    從而就造成了彈跳模式。

  • So this guy doesn't work quite yet,

    這個小傢伙還沒能完全正常運作

  • but we do have slightly larger versions that do run around.

    但是我們還有稍大些 能夠四處奔跑的版本。

  • So this is about a centimeter cubed, a centimeter on a side, so very tiny,

    這大約是一立方釐米, 每一邊都為一釐米,非常微小,

  • and we've gotten this to run about 10 body lengths per second,

    而我們讓它能夠以 每秒十個身長的速度奔跑,

  • so 10 centimeters per second.

    也就是每秒10釐米的速度。

  • It's pretty quick for a little, small guy,

    對於這麼小的傢伙來說是非常快了,

  • and that's really only limited by our test setup.

    而這還僅僅侷限於我們的測試設置。

  • But this gives you some idea of how it works right now.

    但現在這能讓你了解 它是如何運作的了。

  • We can also make 3D-printed versions of this that can climb over obstacles,

    我們也可以製作它的3D打印模型, 可以跨越障礙物的模型,

  • a lot like the cockroach that you saw earlier.

    十分像你們之前看到過的蟑螂。

  • But ultimately we want to add everything onboard the robot.

    但是最終我們希望能 把所有部件都安置到機器人身上。

  • We want sensing, power, control, actuation all together,

    我們想讓感應、電源、 操控和驅動一同實現,

  • and not everything needs to be bio-inspired.

    並且不是所有部件都需要是仿生的。

  • So this robot's about the size of a Tic Tac.

    而這個機器人差不多是指針大小。

  • And in this case, instead of magnets or muscles to move this around,

    在這種情況下, 我們並沒有用磁鐵或肌肉,

  • we use rockets.

    而是火箭裝置來使它移動。

  • So this is a micro-fabricated energetic material,

    這是一片微加工的含能材料,

  • and we can create tiny pixels of this,

    而我們能製造它的微觀像素,

  • and we can put one of these pixels on the belly of this robot,

    然後將一塊像素放到這個機器人的腹部,

  • and this robot, then, is going to jump when it senses an increase in light.

    當這個機器人感應到 光源增加時,就會跳躍。

  • So the next video is one of my favorites.

    下一條短片是我的最愛。

  • So you have this 300-milligram robot

    你能看到這隻300毫克的機器人

  • jumping about eight centimeters in the air.

    在空中跳躍到大概8釐米高。

  • It's only four by four by seven millimeters in size.

    但它只有4*4*7立方毫米的體積。

  • And you'll see a big flash at the beginning

    在短片的開頭,能看到當能量被釋放時,

  • when the energetic is set off,

    有一道大閃光,

  • and the robot tumbling through the air.

    而機器人就在空中翻跟鬥

  • So there was that big flash,

    所以此時就有一大道閃光,

  • and you can see the robot jumping up through the air.

    然後你就可以看到 機器人在空中翻跟鬥。

  • So there's no tethers on this, no wires connecting to this.

    而這個機器人的身上 沒有栓繩或連接電線,

  • Everything is onboard, and it jumped in response

    所有的部件都安裝到位了,

  • to the student just flicking on a desk lamp next to it.

    當旁邊的一個學生打開了桌面檯燈時,

  • So I think you can imagine all the cool things that we could do

    機器人就會受到感應,跳躍起來。

  • with robots that can run and crawl and jump and roll at this size scale.

    因此我想你能想像到我們用這樣尺寸的, 會跑、會怕、會跳、會滾的機器人,所能做到的很多很酷的事情。

  • Imagine the rubble that you get after a natural disaster like an earthquake.

    想像一下一場自然災害, 如地震發生之後,產生的諸多碎石。

  • Imagine these small robots running through that rubble

    想像一下這些微型機器人穿越過碎石

  • to look for survivors.

    來尋找倖存者。

  • Or imagine a lot of small robots running around a bridge

    或想像一下許多微型機器人跑過一座橋,

  • in order to inspect it and make sure it's safe

    檢閱橋的質量,

  • so you don't get collapses like this,

    保證它的安全性,

  • which happened outside of Minneapolis in 2007.

    因而不至於造成發生在2007年,

  • Or just imagine what you could do

    明尼阿波利斯市的橋體坍塌事件。

  • if you had robots that could swim through your blood.

    或者就想像一下當這樣的機器人 游過你的血液時的樣子。

  • Right? "Fantastic Voyage," Isaac Asimov.

    是吧?正如艾薩克·阿西莫夫在 《神奇的旅程》中所描述的一樣。

  • Or they could operate without having to cut you open in the first place.

    然後醫生們從一開始就不需要開腹, 也能進行手術了。

  • Or we could radically change the way we build things

    又或許我們能夠讓 微型機器人像白蟻一般工作,

  • if we have our tiny robots work the same way that termites do,

    從而徹底改變我們建造事物的方式,

  • and they build these incredible eight-meter-high mounds,

    而他們能夠在非洲和澳洲,

  • effectively well ventilated apartment buildings for other termites

    為其他白蟻建造難以置信的,

  • in Africa and Australia.

    高效率通風的八米高的土堆。

  • So I think I've given you some of the possibilities

    所以我認為我已經向各位 展示了利用這些微型機器人,

  • of what we can do with these small robots.

    所能實現的許多可能性。

  • And we've made some advances so far, but there's still a long way to go,

    而迄今為止我們也取得了一些進步, 但仍有很長的路要走,

  • and hopefully some of you can contribute to that destination.

    希望你們當中也有人能夠為此做出貢獻。

  • Thanks very much.

    非常感謝。

  • (Applause)

    (掌聲)

My students and I work on very tiny robots.

我的學生們和我致力於建造 微型的機器人,

字幕與單字

影片操作 你可以在這邊進行「影片」的調整,以及「字幕」的顯示

B1 中級 中文 美國腔 TED 機器人 螞蟻 裝置 昆蟲 毫米

TED】莎拉-伯格佈雷特。為什麼我製造的機器人只有米粒大小(莎拉-伯格布萊特:為什麼我製造的機器人只有米粒大小)。 (【TED】Sarah Bergbreiter: Why I make robots the size of a grain of rice (Sarah Bergbreiter: Why I make robots the size of a grain of rice))

  • 51 3
    Zenn 發佈於 2021 年 01 月 14 日
影片單字