Placeholder Image

字幕列表 影片播放

  • Intelligence -- what is it?

    譯者: Willy Feng 審譯者: Rowena Weng

  • If we take a look back at the history

    智慧,是什麽?

  • of how intelligence has been viewed,

    如果我們回顧歷史

  • one seminal example has been

    對智慧的定義,

  • Edsger Dijkstra's famous quote that

    有一個基本的例子是,

  • "the question of whether a machine can think

    艾茲赫爾·戴克斯特拉說過的一句話: (註:著名電腦科學家)

  • is about as interesting

    “關於機械是否能思考的問題

  • as the question of whether a submarine

    就有如在問

  • can swim."

    潛水艇是否能游泳

  • Now, Edsger Dijkstra, when he wrote this,

    一樣有意思。”

  • intended it as a criticism

    當艾茲赫爾·戴克斯特拉寫下這句話,

  • of the early pioneers of computer science,

    是在質疑

  • like Alan Turing.

    早期的電腦科學先驅,

  • However, if you take a look back

    譬如艾倫·圖靈。

  • and think about what have been

    然而,如果你回顧

  • the most empowering innovations

    並思考,

  • that enabled us to build

    是什麼重大的創新

  • artificial machines that swim

    使我們能夠製造出

  • and artificial machines that [fly],

    會游泳和會飛的

  • you find that it was only through understanding

    人造機器,

  • the underlying physical mechanisms

    你就會發現,

  • of swimming and flight

    唯有透過了解

  • that we were able to build these machines.

    游泳和飛翔的基本物理機制,

  • And so, several years ago,

    我們才能製造出這些機器。

  • I undertook a program to try to understand

    因此,幾年前,

  • the fundamental physical mechanisms

    我著手進行一個計劃,

  • underlying intelligence.

    試圖去了解什麼是

  • Let's take a step back.

    智慧的基本物理機制。

  • Let's first begin with a thought experiment.

    先讓我們退一步,

  • Pretend that you're an alien race

    先從一個發想實驗開始。

  • that doesn't know anything about Earth biology

    假設你是一個外星人,

  • or Earth neuroscience or Earth intelligence,

    對地球的生物完全不了解,

  • but you have amazing telescopes

    也不了解地球的神經學和生物智慧,

  • and you're able to watch the Earth,

    但你有很棒的望遠鏡,

  • and you have amazingly long lives,

    可以直接看到地球,

  • so you're able to watch the Earth

    而且你有很長很長的壽命,

  • over millions, even billions of years.

    所以你有好幾百萬年甚至好幾十億年的時間

  • And you observe a really strange effect.

    來觀察地球。

  • You observe that, over the course of the millennia,

    你發現一個很怪異的事情。

  • Earth is continually bombarded with asteroids

    你發現,在千禧年這個過程中,

  • up until a point,

    地球不斷地遭到小行星的撞擊,

  • and that at some point,

    直到某一天,

  • corresponding roughly to our year, 2000 AD,

    在某一個時刻,

  • asteroids that are on

    大約就是我們現在的西元兩千年左右,

  • a collision course with the Earth

    小行星原本運行在

  • that otherwise would have collided

    會撞擊到地球的軌道上,

  • mysteriously get deflected

    但是那個軌道

  • or they detonate before they can hit the Earth.

    神奇地偏移了,

  • Now of course, as earthlings,

    或者小行星在撞到地球前爆炸了。

  • we know the reason would be

    當然,身為地球人,

  • that we're trying to save ourselves.

    我們知道那是因為

  • We're trying to prevent an impact.

    我們試著拯救人類,

  • But if you're an alien race

    試著避免撞擊發生。

  • who doesn't know any of this,

    但如果你是外星人,

  • doesn't have any concept of Earth intelligence,

    不知道這些,

  • you'd be forced to put together

    對地球上的智慧沒有任何概念,

  • a physical theory that explains how,

    那麼你只好勉強拼湊出一個

  • up until a certain point in time,

    物理理論來解釋,

  • asteroids that would demolish the surface of a planet

    直到某一個時刻,

  • mysteriously stop doing that.

    應該毀滅地表一切的小行星

  • And so I claim that this is the same question

    神奇地不再發生。

  • as understanding the physical nature of intelligence.

    而我認為這跟要了解

  • So in this program that I undertook several years ago,

    智慧的物理機制是一樣的問題。

  • I looked at a variety of different threads

    因此,在這項我幾年前開始進行的計劃中,

  • across science, across a variety of disciplines,

    我研究各式各樣的想法,

  • that were pointing, I think,

    橫跨科學以及不同領域,

  • towards a single, underlying mechanism

    我認為,

  • for intelligence.

    這些都指向智慧的一個單一

  • In cosmology, for example,

    基本機制。

  • there have been a variety of different threads of evidence

    以宇宙論為例,

  • that our universe appears to be finely tuned

    有各種不同的證據顯示

  • for the development of intelligence,

    我們所在的宇宙是被精心調整到

  • and, in particular, for the development

    適合發展出智慧的,

  • of universal states

    尤其是發展出一個

  • that maximize the diversity of possible futures.

    普遍性的狀態

  • In game play, for example, in Go --

    能使未來的可能性上做最大化。

  • everyone remembers in 1997

    以圍棋為例,

  • when IBM's Deep Blue beat Garry Kasparov at chess --

    大家都記得1997年

  • fewer people are aware

    IBM 的深藍電腦打敗棋王卡斯帕羅夫,

  • that in the past 10 years or so,

    但只有少數人知道

  • the game of Go,

    在過去的十年,

  • arguably a much more challenging game

    圍棋,

  • because it has a much higher branching factor,

    被視為是非常具挑戰性的遊戲,

  • has also started to succumb

    因為它有更多的分歧因素,

  • to computer game players

    同時也開始讓

  • for the same reason:

    電腦玩家臣服,

  • the best techniques right now for computers playing Go

    這些都是同樣的理由:

  • are techniques that try to maximize future options

    現在讓電腦下棋最好的技巧

  • during game play.

    就是將下棋過程可能發生的事件數

  • Finally, in robotic motion planning,

    最大化。

  • there have been a variety of recent techniques

    最後,在機器人的行動規劃中,

  • that have tried to take advantage

    最近的各種技術

  • of abilities of robots to maximize

    都是試圖讓機器人

  • future freedom of action

    在未來能自由行動的可能性

  • in order to accomplish complex tasks.

    做最大化,

  • And so, taking all of these different threads

    以完成某些複雜的任務。

  • and putting them together,

    所以,用這些不同的想法,

  • I asked, starting several years ago,

    把它們拼湊在一起,

  • is there an underlying mechanism for intelligence

    在幾年前我開始問,

  • that we can factor out

    有沒有一個關於智慧的基本機制

  • of all of these different threads?

    是我們可以從這些不同的想法中

  • Is there a single equation for intelligence?

    分解出來的?

  • And the answer, I believe, is yes. ["F = T ∇ Sτ"]

    有沒有一個屬於智慧的方程式?

  • What you're seeing is probably

    我相信答案是,有的。 ["F = T ∇ Sτ"]

  • the closest equivalent to an E = mc²

    你現在看到的

  • for intelligence that I've seen.

    或許是我看過最接近 E = mc²

  • So what you're seeing here

    的屬於智慧的方程式。

  • is a statement of correspondence

    你所看到的

  • that intelligence is a force, F,

    是相對應的詮釋,

  • that acts so as to maximize future freedom of action.

    智慧是一種力量,F

  • It acts to maximize future freedom of action,

    它的作用是最大化行動的自由度。

  • or keep options open,

    它的作用會最大化行動的自由度

  • with some strength T,

    或是一直保有開放的選擇,

  • with the diversity of possible accessible futures, S,

    配合某一強度 T,

  • up to some future time horizon, tau.

    和可能發生的未來多樣性,S

  • In short, intelligence doesn't like to get trapped.

    直到未來的某一個時間點,t。

  • Intelligence tries to maximize future freedom of action

    簡單地說,智慧不喜歡被約束住。

  • and keep options open.

    智慧希望最大化未來行動的自由度,

  • And so, given this one equation,

    保持開放的選項。

  • it's natural to ask, so what can you do with this?

    所以,有了這一個方程式,

  • How predictive is it?

    很自然地就會問,你能用它做甚麼?

  • Does it predict human-level intelligence?

    它的預測能力如何?

  • Does it predict artificial intelligence?

    它能否預測人類的智慧?

  • So I'm going to show you now a video

    它能否預測人工智慧?

  • that will, I think, demonstrate

    現在我要給各位看一段影片,

  • some of the amazing applications

    我認為可以說明

  • of just this single equation.

    一些令人驚訝的應用,

  • (Video) Narrator: Recent research in cosmology

    而且都只來自這一個方程式。

  • has suggested that universes that produce

    (影片) 旁白:宇宙學最近的研究

  • more disorder, or "entropy," over their lifetimes

    推論宇宙會產生愈來愈多的

  • should tend to have more favorable conditions

    失序,或是熵 (entropy),

  • for the existence of intelligent beings such as ourselves.

    應該更容易擁有有利的環境,

  • But what if that tentative cosmological connection

    讓智慧存在。

  • between entropy and intelligence

    但如果把這個宇宙學待驗證的

  • hints at a deeper relationship?

    亂度和智慧的關係

  • What if intelligent behavior doesn't just correlate

    再進一步加深會怎樣?

  • with the production of long-term entropy,

    如果智慧和長期亂度的增加

  • but actually emerges directly from it?

    不只是有正相關性,

  • To find out, we developed a software engine

    而且是從中發展出來的呢?

  • called Entropica, designed to maximize

    為了解答這問題,我們開發了一個軟體

  • the production of long-term entropy

    叫做 "Entropica",

  • of any system that it finds itself in.

    可以把任何系統中

  • Amazingly, Entropica was able to pass

    熵的長期成長最大化。

  • multiple animal intelligence tests, play human games,

    令人驚訝的是,Entropica 能夠通過

  • and even earn money trading stocks,

    多項動物智慧測試,玩人類的遊戲,

  • all without being instructed to do so.

    甚至從股票交易中賺到錢,

  • Here are some examples of Entropica in action.

    而且事前完全不用去教導它。

  • Just like a human standing upright without falling over,

    這裡有幾個 Entropica 的實例。

  • here we see Entropica

    像人可以直立站著不會跌倒,

  • automatically balancing a pole using a cart.

    我們可以看到,

  • This behavior is remarkable in part

    Entropica使用一台車來自動平衡桿子。

  • because we never gave Entropica a goal.

    這個表現在某方面很了不起,

  • It simply decided on its own to balance the pole.

    因為我們從來沒有為Entropica設定一個目標。

  • This balancing ability will have appliactions

    由它自己決定要去平衡這個桿子。

  • for humanoid robotics

    這個平衡的能力可以應用在

  • and human assistive technologies.

    機器人上,

  • Just as some animals can use objects

    以及人類行動輔助技術。

  • in their environments as tools

    就像有些動物

  • to reach into narrow spaces,

    會使用週遭的物品當作工具,

  • here we see that Entropica,

    以便能伸及到窄小的地方,

  • again on its own initiative,

    我們可以再次看到 Entropica

  • was able to move a large disk representing an animal

    由它自己決定,

  • around so as to cause a small disk,

    可以移動代表動物的大圓圈,

  • representing a tool, to reach into a confined space

    讓代表工具的小圓圈

  • holding a third disk

    進入一個有第三個圓圈的

  • and release the third disk from its initially fixed position.

    狹小空間,

  • This tool use ability will have applications

    然後把第三個圓圈從裡面擠出來。

  • for smart manufacturing and agriculture.

    這個使用工具的能力可以應用在

  • In addition, just as some other animals

    智慧製造和農業上。

  • are able to cooperate by pulling opposite ends of a rope

    另外,就像其它動物

  • at the same time to release food,

    會同時合力拉下繩索的兩端,

  • here we see that Entropica is able to accomplish

    讓食物掉出來,

  • a model version of that task.

    我們看到 Entropica 可以完成

  • This cooperative ability has interesting implications

    模組化後的同樣任務。

  • for economic planning and a variety of other fields.

    這個合作的能力可以應用在

  • Entropica is broadly applicable

    經濟規劃和其它各樣的領域。

  • to a variety of domains.

    Entropica 可以廣泛的應用在

  • For example, here we see it successfully

    各樣的領域。

  • playing a game of pong against itself,

    例如,我們可以看到它

  • illustrating its potential for gaming.

    成功地和自己玩 "乓" (Pong),

  • Here we see Entropica orchestrating

    代表它能玩遊戲的潛力。

  • new connections on a social network

    我們看到 Entropica 精心地

  • where friends are constantly falling out of touch

    建立起社群的新連結,

  • and successfully keeping the network well connected.

    當朋友們不時地失去聯繫,

  • This same network orchestration ability

    它會成功地維持這個網絡。

  • also has applications in health care,

    這樣的網絡連結能力

  • energy, and intelligence.

    同樣可以應用在醫療照顧,

  • Here we see Entropica directing the paths

    能源和智慧發展上。

  • of a fleet of ships,

    這裡我們看到 Entropica

  • successfully discovering and utilizing the Panama Canal

    為海洋中的船隊指引路徑,

  • to globally extend its reach from the Atlantic

    成功地發現並使用巴拿馬運河,

  • to the Pacific.

    使它的足跡遍及全球每個角落,從大西洋

  • By the same token, Entropica

    到太平洋。

  • is broadly applicable to problems

    同樣的,Entropica

  • in autonomous defense, logistics and transportation.

    可以廣泛地應用在

  • Finally, here we see Entropica

    自主防衛和物流運輸上。

  • spontaneously discovering and executing

    最後,我們看到 Entropica

  • a buy-low, sell-high strategy

    自己發現並且執行

  • on a simulated range traded stock,

    "低買高賣"的策略,

  • successfully growing assets under management

    在一個區間交易的股票模擬市場中,

  • exponentially.

    成功地將管理資產規模

  • This risk management ability

    指數性成長。

  • will have broad applications in finance

    這樣的風險管理能力

  • and insurance.

    可以應用在財務

  • Alex Wissner-Gross: So what you've just seen

    和保險上。

  • is that a variety of signature human intelligent

    艾力克斯·威斯奈-格羅斯: 以上你們所看到的

  • cognitive behaviors

    是一個代表人類智慧的

  • such as tool use and walking upright

    認知行為能力,

  • and social cooperation

    像是工具的使用、直立行走、

  • all follow from a single equation,

    以及群體合作,

  • which drives a system

    全部都遵行一個方程式,

  • to maximize its future freedom of action.

    這個方程式驅使一個系統

  • Now, there's a profound irony here.

    可以最大化未來行動的自由。

  • Going back to the beginning

    然而,有一個很大的諷刺是,

  • of the usage of the term robot,

    回顧最初

  • the play "RUR,"

    使用”機器人”這個名詞時,

  • there was always a concept

    在舞台劇《羅梭的萬能工人》(R.U.R,) 中,

  • that if we developed machine intelligence,

    一直有一個概念:

  • there would be a cybernetic revolt.

    如果我們發展了人工智慧,

  • The machines would rise up against us.

    機器人將會起義反抗,

  • One major consequence of this work

    對抗我們人類。

  • is that maybe all of these decades,

    我們這個研究主要的結論之一是,

  • we've had the whole concept of cybernetic revolt

    或許在過去這幾十年來,

  • in reverse.

    我們在逆向思考"機器人反抗”

  • It's not that machines first become intelligent

    這個概念。

  • and then megalomaniacal

    並不是機器先變聰明,

  • and try to take over the world.

    然後自大,

  • It's quite the opposite,

    然後才企圖統治全世界,

  • that the urge to take control

    而是應該反過來看,

  • of all possible futures

    想要控制所有未來可能性

  • is a more fundamental principle

    的慾望,

  • than that of intelligence,

    比控制智慧

  • that general intelligence may in fact emerge

    是更加基本的原則,

  • directly from this sort of control-grabbing,

    一般的智慧或許是

  • rather than vice versa.

    直接從操控中產生的,

  • Another important consequence is goal seeking.

    並非反過來。

  • I'm often asked, how does the ability to seek goals

    另一個重要的結論是尋找目標。

  • follow from this sort of framework?

    我經常被問到,尋找目標的能力

  • And the answer is, the ability to seek goals

    是如何從這個架構中產生的?

  • will follow directly from this

    答案是,尋找目標的能力

  • in the following sense:

    會直接來自於

  • just like you would travel through a tunnel,

    以下這個想法:

  • a bottleneck in your future path space,

    就像你行經一個隧道,

  • in order to achieve many other

    一個在你未來道路上的瓶頸,

  • diverse objectives later on,

    是為了到達許多

  • or just like you would invest

    在未來的不同目的地,

  • in a financial security,

    或者,就像你在證券上的

  • reducing your short-term liquidity

    投資,

  • in order to increase your wealth over the long term,

    降低短期的流動性,

  • goal seeking emerges directly

    是為了增加長期的財富,

  • from a long-term drive

    而尋找目標是來自於

  • to increase future freedom of action.

    一個長期的趨動力

  • Finally, Richard Feynman, famous physicist,

    用來增加未來的行動自由。

  • once wrote that if human civilization were destroyed

    最後,知名的物理學家理察費曼曾說,

  • and you could pass only a single concept

    如果人類文明要被毀滅了,

  • on to our descendants

    而你只能留下一個概念

  • to help them rebuild civilization,

    給後世的子孫,

  • that concept should be

    以便協助他們重建文明,

  • that all matter around us

    那麼這個概念應該是:

  • is made out of tiny elements

    所有我們週遭的物質

  • that attract each other when they're far apart

    是是由微小的元素組成,

  • but repel each other when they're close together.

    當它們相隔很遠時會互相吸引,

  • My equivalent of that statement

    但靠近時會互相排斥。

  • to pass on to descendants

    而我同樣要

  • to help them build artificial intelligences

    留給後世的想法

  • or to help them understand human intelligence,

    以便幫助他們發展人工智慧,

  • is the following:

    或是幫助他們了解人類的智慧,

  • Intelligence should be viewed

    我會說:

  • as a physical process

    智慧應該被視為

  • that tries to maximize future freedom of action

    一個物理程序,

  • and avoid constraints in its own future.

    它將試著最大化未來的行動自由,

  • Thank you very much.

    避免將自己侷限住。

  • (Applause)

    謝謝大家。

Intelligence -- what is it?

譯者: Willy Feng 審譯者: Rowena Weng

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋