Placeholder Image

字幕列表 影片播放

  • Is teleportation possible?

    瞬間移動有可能嗎?

  • Could a baseball transform into something like a radio wave,

    棒球可以先轉變成電磁波之類的東西,

  • travel through buildings,

    穿越建築物,

  • bounce around corners,

    碰撞後反彈,

  • and change back into a baseball?

    再變回棒球嗎?

  • Oddly enough, thanks to quantum mechanics, the answer might actually be yes.

    很神奇地,根據量子力學,或許真的可行

  • Sort of.

    大概啦

  • Here's the trick.

    秘密是這樣的

  • The baseball itself couldn't be sent by radio,

    棒球本身無法由電磁波傳送,

  • but all the information about it could.

    但有關它的所有資訊可以

  • In quantum physics, atoms and electrons

    量子物理中,原子和電子

  • are interpreted as a collection of distinct properties,

    被視作是各種不同性質的集合體,

  • for example, position,

    例如:位置、

  • momentum,

    動量、

  • and intrinsic spin.

    還有自旋

  • The values of these properties configure the particle,

    這些性質的值共同決定粒子,

  • giving it a quantum state identity.

    給予它一個專屬量子態

  • If two electrons have the same quantum state,

    如果兩個電子有相同的量子態,

  • they're identical.

    他們就是相同的

  • In a literal sense, our baseball is defined by a collective quantum state

    口語一點來說,我們的棒球是由眾多原子的量子態

  • resulting from its many atoms.

    的集合所決定而成

  • If this quantum state information could be read in Boston

    如果這條量子態訊息可以在波士頓讀取

  • and sent around the world,

    再傳輸到全世界,

  • atoms for the same chemical elements could have this information

    訊息可以在邦加羅爾

  • imprinted on them in Bangalore

    標記在相同化學元素的原子上

  • and be carefully directed to assemble,

    再依照指示小心地組合,

  • becoming the exact same baseball.

    成為一模一樣的棒球

  • There's a wrinkle though.

    但有個困難點

  • Quantum states aren't so easy to measure.

    測量量子態可不簡單

  • The uncertainty principle in quantum physics

    量子物理中的測不準原理

  • implies the position and momentum of a particle

    指出一個粒子的位置和動量

  • can't be measured at the same time.

    無法同時測得

  • The simplest way to measure the exact position of an electron

    測量電子精確位置最簡單的方法

  • requires scattering a particle of light, a photon, from it,

    需要光粒子(光子)的散射,

  • and collecting the light in a microscope.

    並將光會聚在顯微鏡中

  • But that scattering changes the momentum of the electron in an unpredictable way.

    但是散射會隨機改變電子的動量

  • We lose all previous information about momentum.

    我們便失去之前所得知的、關於動量的所有資訊

  • In a sense, quantum information is fragile.

    也就是說,量子的資訊很脆弱

  • Measuring the information changes it.

    測量資訊的同時就改變了

  • So how can we transmit something

    那麼我們要如何傳送一個

  • we're not permitted to fully read without destroying it?

    我們無法完整讀取的東西而不破壞它?

  • The answer can be found in the strange phenomena of quantum entanglement.

    答案可以用量子糾纏的奇怪現象來解釋

  • Entanglement is an old mystery from the early days of quantum physics

    量子糾纏是量子物理早期的謎團

  • and it's still not entirely understood.

    且至今仍未被清楚地解釋

  • Entangling the spin of two electrons results in an influence

    兩電子自旋的糾纏會造成

  • that transcends distance.

    跨越距離的影響

  • Measuring the spin of the first electron

    測量第一個電子的自旋方向

  • determines what spin will measure for the second,

    便能得知第二個電子的自旋是什麼方向

  • whether the two particles are a mile or a light year apart.

    無論這兩個粒子距離多遠

  • Somehow, information about the first electron's quantum state,

    透過某種方法,第一個電子的量子態資訊,

  • called a qubit of data,

    又稱一量子位元的資訊,

  • influences its partner without transmission across the intervening space.

    能夠在不經過中間空間的情況下影響它的對應電子

  • Einstein and his colleagues called this strange communcation

    愛因斯坦和同事稱這種奇怪的傳訊方式為

  • spooky action at a distance.

    遠距離的鬼魅效應

  • While it does seem that entanglement between two particles

    雖然兩粒子間的糾纏現象看似

  • helps transfer a qubit instantaneously across the space between them,

    有助於橫越空間立即傳訊,

  • there's a catch.

    卻有個條件:

  • This interaction must begin locally.

    糾纏現象必須起於兩粒子在同一地點

  • The two electrons must be entangled in close proximity

    其中一個電子被傳送到別處之前

  • before one of them is transported to a new site.

    這兩個電子必須在極接近的距離糾纏

  • By itself, quantum entanglement isn't teleportation.

    若只有一個電子,量子糾纏便無法導致瞬間移動發生

  • To complete the teleport,

    要完成瞬間移動,

  • we need a digital message to help interpret the qubit at the receiving end.

    我們需要在接收端將量子位元轉換為數位訊息

  • Two bits of data created by measuring the first particle.

    測量第一個粒子會產生兩筆資訊

  • These digital bits must be transmitted by a classical channel

    這些數位資訊經由

  • that's limited by the speed of light, radio, microwaves, or perhaps fiberoptics.

    受光速限制的傳統途徑、無線電波、微波,又或許是光纖所傳送

  • When we measure a particle for this digital message,

    當我們測量到粒子的數位訊息,

  • we destroy its quantum information,

    我們也破壞了它的量子資訊

  • which means the baseball must disappear from Boston

    這表示棒球必須從波士頓消失

  • for it to teleport to Bangalore.

    才能瞬間移動到邦加羅爾

  • Thanks to the uncertainty principle,

    基於測不準原理,

  • teleportation transfers the information about the baseball

    瞬間移動將棒球的資訊在兩城市間傳輸

  • between the two cities and never duplicates it.

    而不會複製出另一顆球

  • So in principle, we could teleport objects, even people,

    所以理論上,我們可以瞬間移動物品,甚至人,

  • but at present, it seems unlikely we can measure the quantum states

    但是目前我們似乎不太可能測量出巨大物體之中

  • of the trillion trillion or more atoms in large objects

    上兆或更多原子的量子態

  • and then recreate them elsewhere.

    然後在別的地方重組它們

  • The complexity of this task and the energy needed is astronomical.

    這項任務的複雜度和所需能量大到無法想像

  • For now, we can reliably teleport single electrons and atoms,

    現在,我們可以確實地傳送各個電子和原子,

  • which may lead to super-secured data encryption

    這可能會使未來的量子電腦

  • for future quantum computers.

    有超安全資訊加密功能

  • The philosophical implications of quantum teleportation are subtle.

    將量子瞬間移動的哲學思考是很微妙的

  • A teleported object doesn't exactly transport across space

    瞬間移動的物體並非真的被運輸到別處

  • like tangible matter,

    像實體物質那樣,

  • nor does it exactly transmit across space, like intangible information.

    它也不算是像無形的資訊那樣傳輸

  • It seems to do a little of both.

    似乎兩種模式都有一點

  • Quantum physics gives us a strange new vision

    量子物理給我們一個奇特的新視角

  • for all the matter in our universe as collections of fragile information.

    將宇宙中所有物質視為脆弱資訊的集合

  • And quantum teleportation reveals new ways to influence this fragility.

    量子的瞬間移動揭示影響這種脆弱性質的新方法

  • And remember, never say never.

    記住,永遠別放棄

  • In a little over a century,

    在比一世紀長一點的時間內

  • mankind has advanced from an uncertain new understanding

    人類已經從剛摸索到電子

  • of the behavior of electrons at the atomic scale

    在原子層次的行為

  • to reliably teleporting them across a room.

    進步到可以確實讓他們瞬間移動到另一個空間

  • What new technical mastery of such phenomena

    這樣的現象

  • might we have in 1,000, or even 10,000 years?

    會在 1000 或甚至 10000 年後帶來什麼新的科技發展呢?

  • Only time and space will tell.

    只有時間和空間知道

Is teleportation possible?

瞬間移動有可能嗎?

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B2 中高級 中文 美國腔 TED-Ed 量子 電子 糾纏 棒球 粒子

【TED-Ed】我們能不能夠傳送?- Sajan Saini (【TED-Ed】Will we ever be able to teleport? - Sajan Saini)

  • 949 111
    April Lu 發佈於 2021 年 01 月 14 日
影片單字