Placeholder Image

字幕列表 影片播放

  • With every year, machines surpass humans in more and more activities

    每年,以往被認為只有人類能完成的事情

  • we once thought only we were capable of.

    漸漸的被機械所超越

  • Today's computers can beat us in complex board games,

    現在的電腦可以 在複雜的桌遊中打敗我們

  • transcribe speech in dozens of languages,

    把演講翻譯成各種語言

  • and instantly identify almost any object.

    還能立刻辨識各種物品

  • But the robots of tomorrow may go futher

    在未來,機器人可能會透過

  • by learning to figure out what we're feeling.

    理解我們的感受變得更進步

  • And why does that matter?

    為什麼這很重要?

  • Because if machines and the people who run them

    假如機器人以及操作者 可以精準判斷出我們的情感

  • can accurately read our emotional states,

    可能會給我們很大的幫助, 或是進而操控我們

  • they may be able to assist us or manipulate us

    但在討論到那之前

  • at unprecedented scales.

    試問為什麼像情緒這麼複雜的東西

  • But before we get there,

    可以轉換成 機器唯一理解的語言符號:數字呢?

  • how can something so complex as emotion be converted into mere numbers,

    其實跟大腦先學習認知情緒 才會詮釋自己的心情是一樣的

  • the only language machines understand?

    美國心理學家Paul Ekman 歸類出幾種廣泛使用的情緒

  • Essentially the same way our own brains interpret emotions,

    這些情緒的視覺線索 在各個文化中意義都相同

  • by learning how to spot them.

    舉例來說,一個笑臉圖像 對都市人和原住民來說

  • American psychologist Paul Ekman identified certain universal emotions

    都是代表喜悅

  • whose visual cues are understood the same way across cultures.

    根據Ekman

  • For example, an image of a smile signals joy to modern urban dwellers

    憤怒

  • and aboriginal tribesmen alike.

    厭惡

  • And according to Ekman,

    恐懼

  • anger,

    喜悅

  • disgust,

    悲傷

  • fear,

    以及驚訝都相當有辨識度

  • joy,

    事實證明, 電腦辨識影像的速度愈來愈快

  • sadness,

    多虧了像人工神經網絡 這種學習演算法

  • and surprise are equally recognizable.

    這些人工節點會藉由互相連結 和交換資訊來模仿生物神經的活動

  • As it turns out, computers are rapidly getting better at image recognition

    為了訓練網絡, 會事先輸入預先歸類的樣本,

  • thanks to machine learning algorithms, such as neural networks.

    例如把標示快樂或悲傷的照片輸入系統

  • These consist of artificial nodes that mimic our biological neurons

    網絡會根據特定的特徵調整相關數值, 學習如何辨別這些樣本

  • by forming connections and exchanging information.

    輸入的訓練資料愈多, 運算法辨識新資料就會愈準確

  • To train the network, sample inputs pre-classified into different categories,

    這跟我們的大腦一樣:

  • such as photos marked happy or sad,

    藉由學習以往經驗, 形成往後對新刺激的反應

  • are fed into the system.

    辨識演算法不只會 辨認臉部表情而已,

  • The network then learns to classify those samples

    情緒表達有很多種方式,

  • by adjusting the relative weights assigned to particular features.

    包括肢體語言,語調

  • The more training data it's given,

    心率變化、膚色,以及表皮溫度,

  • the better the algorithm becomes at correctly identifying new images.

    甚至包含說話節奏 和書面的語法結構

  • This is similar to our own brains,

    你可能認為訓練神經網絡 辨識它們是漫長又複雜的程序

  • which learn from previous experiences to shape how new stimuli are processed.

    不過當你了解網路數據的龐大 和現代電腦運算的速度就會改觀了:

  • Recognition algorithms aren't just limited to facial expressions.

    像是從社群網站的發文 到上傳的照片和影片;

  • Our emotions manifest in many ways.

    從通話紀錄到熱感應監視器;

  • There's body language and vocal tone,

    還有記錄生理狀況的穿戴式裝置

  • changes in heart rate, complexion, and skin temperature,

    最大的問題已經不是如何取得資料,

  • or even word frequency and sentence structure in our writing.

    而是使用這些資料的目的

  • You might think that training neural networks to recognize these

    電腦化表情辨識有很多實用途徑:

  • would be a long and complicated task

    利用演算法辨識表情的機器人

  • until you realize just how much data is out there,

    可以幫助孩童學習

  • and how quickly modern computers can process it.

    或是陪伴孤單的人

  • >From social media posts,

    社群媒體公司正在考慮運用演算法

  • uploaded photos and videos,

    來標記含有特定文字或用語的發文 以協助自殺防治

  • and phone recordings,

    情緒辨識軟體 可以幫助治療心理疾病

  • to heat-sensitive security cameras

    甚至提供人們低價位的 自動化心理治療

  • and wearables that monitor physiological signs,

    儘管有這些好處,

  • the big question is not how to collect enough data,

    大型網路自動掃描我們的照片、 對話紀錄、和生理層面是相當惱人的

  • but what we're going to do with it.

    當我們的情緒數據被公司利用來打廣告 我們該如何保有隱私?

  • There are plenty of beneficial uses for computerized emotion recognition.

    同時也出現人權問題

  • Robots using algorithms to identify facial expressions

    警方能夠把未決定犯罪的人 直接判定為罪犯嗎?

  • can help children learn

    機器人的發展還有很長的路要走,

  • or provide lonely people with a sense of companionship.

    例如辨別像諷刺這種細微的情緒

  • Social media companies are considering using algorithms

    以及分辨情緒強弱, 例如一個人多快樂或多難過

  • to help prevent suicides by flagging posts that contain specific words or phrases.

    儘管如此,機器人將來 可能會精準地判斷情緒

  • And emotion recognition software can help treat mental disorders

    並做出回應

  • or even provide people with low-cost automated psychotherapy.

    但是人類會不會因 機器人的過度入侵感到恐懼,

  • Despite the potential benefits,

    這又是另一回事了

  • the prospect of a massive network automatically scanning our photos,

  • communications,

  • and physiological signs is also quite disturbing.

  • What are the implications for our privacy when such impersonal systems

  • are used by corporations to exploit our emotions through advertising?

  • And what becomes of our rights

  • if authorities think they can identify the people likely to commit crimes

  • before they even make a conscious decision to act?

  • Robots currently have a long way to go

  • in distinguishing emotional nuances, like irony,

  • and scales of emotions, just how happy or sad someone is.

  • Nonetheless, they may eventually be able to accurately read our emotions

  • and respond to them.

  • Whether they can empathize with our fear of unwanted intrusion, however,

  • that's another story.

With every year, machines surpass humans in more and more activities

每年,以往被認為只有人類能完成的事情

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋