Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • Hi! This is Rob. Welcome to Math Antics.

    你好,我是羅伯。歡迎來到數學趣事。

  • In this lesson, we're going to learn some really important things

    在本課中,我們將學習一些非常重要的內容

  • about a whole branch of math called Algebra.

    關於一門名為 "代數 "的數學分支。

  • The first thing you need to know is that Algebra is a lot like arithmetic.

    首先您需要知道的是,代數與算術很相似。

  • It follows all the rules of arithmetic

    它遵循所有算術規則

  • and it uses the same four main operations that arithmetic is built on:

    它使用與算術相同的四種主要運算:

  • addition, subtraction, multiplication and division.

    加法、減法、乘法和除法。

  • But Algebra introduces a new element...

    但代數引入了一個新元素

  • the element of the unknown.

    未知因素。

  • When you were learning arithmetic,

    在你學算術的時候

  • the only thing that was ever unknown was the answer to the problem.

    唯一未知的就是問題的答案。

  • For example, you might have the problem 1 + 2 = what?

    例如,你可能會遇到 1 + 2 = 什麼的問題?

  • The answer isn't known until you go ahead and do the arithmetic.

    答案只有等你去算一算才知道。

  • Now the important thing about Algebra is that when we don't know what a number is yet,

    現在,代數的重要之處在於,當我們還不知道一個數字是什麼的時候、

  • we use a symbol in its place.

    我們用一個符號來代替。

  • that symbol is usually just any letter of the alphabet.

    該符號通常只是字母表中的任何一個字母。

  • A really popular letter to choose is the letter 'x'.

    一個非常受歡迎的字母是'x'。

  • So in arithmetic, we would just leave the problem like this: 1 + 2 = "blank"

    是以,在算術中,我們只需這樣處理問題:1 + 2 = "空白"

  • and we'd write in the answer when we did the addition.

    在做加法運算時,我們會寫入答案。

  • But in Algebra, we'd write it like this: 1 + 2 = x

    但在代數學中,我們會這樣寫: 1 + 2 = x

  • The 'x' is a place holder that stands for the number that we don't know yet.

    'x'是一個佔位符,代表我們還不知道的數字。

  • What we have here is a very basic algebraic equation.

    我們現在看到的是一個非常基本的代數方程。

  • An equation is just a mathematical statement that two things are equal.

    等式只是兩個事物相等的數學表述。

  • An equation says, "the things on this side of the equal sign

    等式說,等號這一邊的事物

  • have the same value as the things on the other side of the equal sign."

    與等號另一側的事物具有相同的價值;

  • In this case, our equation is telling us that the known values on this side (1+2)

    在這種情況下,等式告訴我們這邊的已知值 (1+2)

  • are equal to what's on the other side,

    與另一邊的東西相等、

  • which happens to be the unknown value that we are calling 'x'.

    這恰好是我們稱之為 'x' 的未知值。

  • One of the main goals in Algebra

    代數的主要目標之一

  • is to figure out what the unknown values in equations are.

    就是找出方程中的未知值。

  • And when you do that, it's called "solving the equations".

    當你這樣做的時候,就叫做 "解方程"。

  • In this equation, it's pretty easy to see that the unknown value is just 3.

    在這個等式中,很容易看出未知值只是 3。

  • All you have to do is actually add the 1 and 2 together on this side of the equation

    你要做的就是把等式這邊的 1 和 2 相加

  • and it turns into 3 = x, which is the same as x = 3.

    就變成了 3 = x,與 x = 3 相同。

  • So now we know what 'x' is! It's just 3.

    現在我們知道什麼是'x'了! 就是3。

  • That almost seems too easy, doesn’t it?

    這似乎太容易了,不是嗎?

  • And that's why in Algebra, you are usually given an equation in a more complicated form

    這就是為什麼在代數中,通常會給你一個更復雜形式的等式

  • like this: x - 2 = 1.

    就像這樣:x - 2 = 1。

  • This is exactly the same equation as 1 + 2 = x,

    這與 1 + 2 = x 的等式完全相同、

  • but it has been rearranged so that it's not quite as easy to tell what 'x' is.

    但經過重新編排後,'x'是什麼就不那麼容易分辨了。

  • So in Algebra, solving equations is a lot like a game

    是以,在代數學中,解方程很像一場遊戲

  • where you are given mixed-up, complicated equations,

    在這裡,你會得到紛繁複雜的方程式、

  • and it's your job to simplify them and rearrange them

    而你的工作就是簡化它們,重新排列它們

  • until it is a nice simple equation (like x = 3)

    直到它成為一個漂亮的簡單方程(如 x = 3)

  • where it's easy to tell what the unknown values are.

    在這裡,很容易看出未知值是什麼。

  • We're going to learn a lot more about

    我們將進一步瞭解

  • how you actually do that (how you solve equations)

    如何實際操作(如何解方程)

  • in the next several videos,

    在接下來的幾個視頻中、

  • but for now, let's learn some important rules about

    但現在,讓我們學習一些重要規則,瞭解

  • how symbols can and can't be used in algebraic equations.

    代數方程中如何使用和不能使用符號。

  • The first rule you need to know is that the same symbol (or letter)

    您需要知道的第一條規則是,相同的符號(或字母)

  • can be used in different algebra problems to stand for different unknown values.

    可用於不同的代數問題,代表不同的未知值。

  • For example, in the problem we just solved,

    例如,在我們剛剛解決的問題中、

  • the letter 'x' was used to stand for the number 3, right?

    字母'x'被用來代表數字 3,對嗎?

  • But 'x' could stand for a different number in a different problem.

    但是,'x'可以代表不同問題中的不同數字。

  • Like, if someone asks us to solve the equation, 5 + x = 10.

    比如,有人讓我們解方程 5 + x = 10。

  • In order for the two sides of this equation to be equal,

    為了使等式的兩邊相等、

  • 'x' must have the value '5' in this problem, because 5 + 5 = 10.

    在這個問題中,'x'的值一定是'5',因為 5 + 5 = 10。

  • So 'x' (or any other symbol) can stand for different values in different problems.

    是以,'x'(或任何其他符號)在不同的問題中可以代表不同的值。

  • That's okay,

    沒關係

  • but what's NOT okay is for a symbol

    但不允許的是一個符號

  • to stand for different values in the same problem at the same time!

    同時代表同一問題中的不同數值!

  • For example, what if you had the equation: x + x = 10?

    例如,如果你有這樣一個方程:x + x = 10?

  • This equation says that if we add 'x' to 'x' we will get 10.

    這個等式表示,如果我們將 'x' 加到 'x',就會得到 10。

  • And there are a lot of different numbers we could add together to get 10, like 6 and 4.

    有很多不同的數字可以相加得到 10,比如 6 和 4。

  • But, if we had the first 'x' stand for 6 and the second 'x' stand for 4,

    但是,如果我們讓第一個'x'代表 6,第二個'x'代表 4、

  • then 'x' would stand for two different value at the same time

    那麼 'x' 將同時代表兩個不同的值

  • and things could get really confusing!

    事情可能會變得非常混亂!

  • If you wanted symbols to stand for two different numbers at the same time,

    如果您想讓符號同時代表兩個不同的數字、

  • you would need to use two different symbols, like 'x' and 'y'.

    您需要使用兩個不同的符號,如 'x'和 'y'。

  • So in Algebra, whenever you see the same symbol repeated more than once in an equation,

    是以,在代數中,只要你看到同一個符號在等式中重複出現不止一次、

  • it's representing the same unknown value.

    它代表的是同一個未知值。

  • Like if you see a really complicated Algebraic equation (like this),

    比如你看到一個非常複雜的代數方程(像這樣)、

  • where 'x' is repeated a lot of different times,

    其中,'x'重複了很多次、

  • all of those 'x's stand for the same value,

    所有這些 'x'都代表相同的值、

  • and it will be your job to figure out what that value is.

    你的工作就是找出這個值是多少。

  • Okay, so for any particular equation,

    好吧,那麼對於任何一個特定的等式、

  • we can't use the same letter to represent two different numbers at the same time,

    我們不能同時用同一個字母來表示兩個不同的數字、

  • but what about the other way around?

    但反過來呢?

  • Could we use two different letters to represent the same number?

    我們可以用兩個不同的字母來表示同一個數字嗎?

  • Yes! - Here's an example of that.

    這就是一個例子。

  • Let's say you have the equation: a + b = 2

    假設方程為:a + b = 2

  • What could 'a' and 'b' stand for so that the equation is true?

    為了使等式成立,'a'和'b'分別代表什麼?

  • Well, If 'a' was 0 and 'b' was 2, then the equation would be true.

    好吧,如果 'a'為 0,而 'b'為 2,那麼等式就成立了。

  • Or, we could switch them around.

    或者,我們可以把它們調換一下。

  • If 'a' was 2 and 'b' was 0, the equation would also be true.

    如果 'a'為 2,而 'b'為 0,等式也將成立。

  • But there's another possibility:

    但還有另一種可能:

  • If 'a' was 1 and 'b' was also 1, that would make the equation true, right?

    如果'a'為 1,'b'也為 1,那麼等式就成立了,對嗎?

  • So, even though 'a' and 'b' are different symbols,

    是以,儘管 'a' 和 'b' 是不同的符號、

  • and would usually be used to represent different numbers,

    通常用來表示不同的數字、

  • there are times when they might happen to represent the same number.

    有時,它們可能恰好代表同一個數字。

  • Oh, and this problem can help us understand something

    哦,這個問題可以幫助我們理解一些東西

  • very important about how symbols are used in Algebra.

    在代數中如何使用符號非常重要。

  • Did you notice that there were different possible solution for this equation?

    你注意到這個方程有不同的可能解嗎?

  • In other words, 'b' could have the value 0, 1, or 2 depending on what the value of 'a' was.

    換句話說,'b'的值可能是 0、1 或 2,這取決於 'a'的值是多少。

  • If 'a' is 0 then 'b' must be 2

    如果 'a' 為 0,那麼 'b' 必須為 2

  • If 'a' is 1 then 'b' must be 1

    如果 'a' 是 1,那麼 'b' 一定是 1

  • If 'a' is 2 then 'b' must be 0

    如果 'a' 是 2,那麼 'b' 一定是 0

  • 'b' can't have two different values at the same time,

    'b'can't have two different values at the same time、

  • but it's value can change over time if the value of 'a' changes.

    但如果 'a'的值發生變化,它的值也會隨之變化。

  • In Algebra, 'b' is what's called a "variable" because it's value can 'vary' or change.

    在代數中,'b'被稱為'變量',因為它的值可以'變化'或改變。

  • In fact, in this equation, both 'a' and 'b' are variables

    事實上,在這個等式中,'a'和'b'都是變量

  • because their values will change depending on the value of each other.

    因為它們的值會隨著彼此的值變化而變化。

  • Actually, it's really common in Algebra to refer to any letter as a variable,

    實際上,在代數中,將任何字母稱為變量都很常見、

  • since letters can stand for different values in different problems.

    因為在不同的問題中,字母可以代表不同的值。

  • But at Math Antics, we'll usually just use the word "variable"

    但在數學趣談中,我們通常只使用 "變量 "一詞;

  • when we're talking about values that can change or vary in the same problem.

    當我們討論同一問題中可能變化或不同的值時。

  • Alright, so far we've learned that Algebra is a lot like arithmetic,

    好了,到目前為止,我們已經瞭解到代數與算術有很多相似之處、

  • but that in includes unknown values and variables that we can solve for in equations.

    但其中包括我們可以在方程中求解的未知值和變量。

  • There's one other really important thing that I want to teach you

    我還想教你一件非常重要的事

  • that will help you understand what's going on in a lot of Algebra problems,

    它將幫助你理解許多代數問題的來龍去脈、

  • and it has to do with multiplication.

    和乘法有關。

  • Here are the four basic arithmetic operations:

    以下是四種基本算術運算:

  • addition, subtraction, multiplication and division.

    加法、減法、乘法和除法。

  • Although in Algebra, you'll usually see division written in fraction form, like this.

    雖然在代數中,你通常會看到用分數形式寫的除法,就像這樣。

  • In Arithmetic, all four operations have the same status,

    在算術運算中,所有四種運算都具有相同的狀態、

  • but in Algebra, multiplication get's some special treatment.

    但在代數學中,乘法得到了一些特殊處理。

  • In Algebra, multiplication is the 'default' operation.

    在代數中,乘法是默認運算。

  • That means, if no other arithmetic operation is shown between two symbols,

    也就是說,如果兩個符號之間沒有其他算術運算、

  • then you can just assume they're being multiplied. The multiplication is 'implied'.

    那麼你就可以認為它們是相乘的。乘法是隱含的。

  • For example, instead of writing 'a' times 'b',

    例如,不要寫 'a'乘以 'b'、

  • you can leave out the times symbol and just write 'ab'.

    可以省略次數符號,只寫 'ab'。

  • Since no operation is shown between these two symbols,

    因為這兩個符號之間沒有運算、

  • you know that you're supposed to multiply 'a' and 'b'.

    你知道你應該乘以'a'和'b'。

  • Of course, you can't actually multiply 'a' and 'b'

    當然,你不可能把 'a'和 'b'相乘;

  • until you figure out what numbers they stand for.

    直到你弄清楚它們代表什麼數字。

  • The advantage of this rule about multiplication is that

    這條乘法規則的優點是

  • it makes many algebraic equations less cluttered and easier to write down.

    它使許多代數方程不再雜亂無章,更易於書寫。

  • For example, instead of this: a * b + c * d = 10

    例如:a * b + c * d = 10

  • You could just write: ab + cd = 10.

    你可以直接寫出:ab + cd = 10。

  • You can also use this shorthand when you are multiplying

    在進行乘法運算時,也可以使用這種速記方法

  • a variable and a known number... like 2x, which means the same thing as 2 times 'x'

    一個變量和一個已知數......比如 2x,它的意思和 2 乘以'x&#39 是一樣的;

  • or 3y which means the same thing as 3 times 'y'

    或 3y,意思與 3 次 'y&#39 相同;

  • Since the symbol and the number are right next to each other,

    因為符號和數字緊挨著、

  • the multiplication is implied.

    乘法是隱含的。

  • You don't have to write it down.

    你不必寫下來。

  • Finally some good news!

    終於有好消息了

  • Now I never have to write down that pesky multiplication symbol again!

    現在,我再也不用寫下那討厭的乘法符號了!

  • Oh yeah!!

    是的

  • Ah, not so fast...

    啊,沒那麼快......

  • there are some cases in Algebra where still need to use a multiplication symbol.

    在代數中,有些情況下仍然需要使用乘法符號。

  • For example, what if you want to show 2 x 5?

    例如,如果您想顯示 2 x 5 呢?

  • If you just get rid of the times symbol and put the '2' right next to the '5',

    只要去掉時間符號,把 '2' 放在 '5' 旁邊即可、

  • it's going to look like the two-digit number twenty-five,

    它看起來就像兩位數二十五、

  • which is NOT the same as 2 x 5.

    這與 2 x 5 不一樣。

  • So, whenever you need to show multiplication between two known numbers,

    是以,無論何時需要顯示兩個已知數之間的乘法關係、

  • you still have to use the times symbol, unless...

    您仍然必須使用時間符號,除非...

  • you use parentheses instead.

    而不是使用括號。

  • But aren't parentheses used to show grouping in math?

    但是,數學中的括號不是用來表示分組的嗎?

  • How can you use that to show multiplication?

    如何用它來表示乘法?

  • Ah, that's a good question.

    啊,這個問題問得好。

  • Parentheses are used to group things,

    括號用於分組、

  • but whenever you put two groups right next to each other,

    但每當你把兩組人放在一起時、

  • with no operation between them,

    之間沒有任何操作、

  • guess what operation is implied.

    猜猜這意味著什麼操作。

  • Yep! Multiplication!

    沒錯! 乘法

  • For example, if you see the this,

    例如,如果您看到以下內容

  • it means that the group (a+b) is being multiplied by the group (x+y).

    這意味著 (a+b) 組與 (x+y) 組相乘。

  • We could put a times symbol between the groups, but we don't have to

    我們可以在各組之間加一個時間符號,但不必這樣做

  • because it's the default operation in Algebra.

    因為它是代數中的默認操作。

  • The multiplication is just implied.

    乘法只是一種暗示。

  • So, going back to our problem: 2 x 5

    那麼,回到我們的問題:2 x 5

  • If you wanted to, you could put each of the numbers inside parentheses like this,

    如果你願意,可以像這樣把每個數字都放在括號裡、

  • and then you could get rid of the multiplication sign.

    然後就可以去掉乘號了。

  • Now this can't be confused with the number twenty-five,

    現在,這不能與數字 25 混淆、

  • and since the groups are right next to each other,

    而且這兩個小組緊挨著、

  • you know that you need to multiply them.

    你知道你需要把它們加倍。

  • Of course, it might seem strange to have just one thing inside 'group' symbols like this,

    當然,在這樣的'組'符號中只有一件事可能會顯得很奇怪、

  • but it's okay to do that in math.

    但在數學課上這樣做是可以的。

  • An alternate way that you could do the same thing would be

    做同樣事情的另一種方法是

  • to put just one of the numbers in parentheses, like this.

    在括號中只寫一個數字,就像這樣。

  • Again, you won't confuse this with a two-digit number

    同樣,您不會將其與兩位數混淆

  • and you know that multiplication is implied.

    就知道乘法是隱含的。

  • Okay, so we've learned that Algebra is a lot like arithmetic,

    好了,我們已經瞭解到代數與算術有很多相似之處、

  • but it involves unknown values or variables that we need to solve for.

    但它涉及我們需要求解的未知值或變量。

  • And we learned that in Algebra, the multiplication sign is usually not shown,

    我們還學到,在代數中,乘號通常是不顯示的、

  • because it's the default operation.

    因為這是默認操作。

  • You can just assume that two things right next to each other are being multiplied.

    你可以假定相鄰的兩樣東西正在相乘。

  • But why do we even care about Algebra?

    但我們為什麼還要關心代數呢?

  • Is it good for anything in the 'real world'?

    在'現實世界'中,它有什麼好處嗎?

  • or is it just a bunch of tricky problems that keep students busy in school?

    還是隻是一堆讓學生在學校裡忙得不可開交的難題?

  • Actually, Algebra is very useful for describing or "modeling" things in the real world.

    事實上,代數對於描述或模擬現實世界中的事物非常有用。

  • It's a little hard to see that when you are just looking

    當你只是看的時候,很難發現這一點

  • at all these numbers and symbols on the page of a math book.

    數學書上的這些數字和符號。

  • But, it's a lot easier to see

    但是,它更容易看到

  • when you start taking algebraic equations and graphing their solutions.

    當你開始計算代數方程並繪製解的圖形時。

  • Graphing an equation is like using its different solutions

    繪製方程圖就像使用方程的不同解法

  • to draw simple lines and curves that can be used to describe and predict things in real life.

    繪製簡單的直線和曲線,用於描述和預測現實生活中的事物。

  • For example, there's a whole class of equations in Algebra

    例如,代數學中有一類方程

  • called "linear" equations because they form straight lines when you graph them.

    稱為"線性方程"是因為它們在作圖時會形成直線。

  • Those sorts of equations could help you describe the slope of a roof

    這些等式可以幫助你描述屋頂的坡度

  • or tell you how long it will take to get somewhere.

    或告訴你到達某個地方需要多長時間。

  • Another class of algebraic equations, called "quadratic" equations

    另一類代數方程稱為二次方程

  • can be used to design telescope lenses,

    可用於設計望遠鏡鏡片、

  • or describe how a ball flies through the air,

    或描述球是如何在空中飛行的、

  • or predict the growth of a population.

    或預測人口增長。

  • So Algebra is used all the time in fields like

    是以,代數一直被用於以下領域

  • science, engineering, economics and computer programming.

    科學、工程學、經濟學和計算機編程。

  • And even though you might not need Algebra to get by in your day to day life,...

    儘管在日常生活中您可能不需要代數來維持生計,但您仍然需要代數。

  • ...so divide both sides by 3. That means x = 42.

    ......所以兩邊都除以 3,即 x = 42。

  • So... in three... two... one...

    所以,三、二、一

  • YES!!

    是的!

  • Alright... now to see how much butter I need.

    好吧......現在看看我需要多少黃油。

  • It's still a very useful part of math.

    它仍然是數學中非常有用的一部分。

  • Thanks for watching Math Antics, and I'll see ya next time!

    感謝您收看《數學趣事》,我們下次再見!

  • Learn more at www.mathantics.com

    瞭解更多資訊,請訪問 www.mathantics.com

Hi! This is Rob. Welcome to Math Antics.

你好,我是羅伯。歡迎來到數學趣事。

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋