Placeholder Image

字幕列表 影片播放

  • Imaginary Numbers Are Real [Part 1: Introduction]

    虛數它一點也不虛 [第一部分:介紹]

  • Let's say we're given the function f(x) = x^2 + 1.

    有一個方程式,它長這樣:f(x) = x^2 + 1.

  • We can graph our function and get a nice parabola.

    我們可以將這個方程式畫出來,得到一個漂亮的拋物綫

  • Now let's say we want to figure out where the equation equals zero

    現在譬如我們想要知道這個方程式在哪裏會等於零

  • we want to find the roots.

    我們其實是想要找到這個方程式的根

  • On our plot this should be where the function crosses the x-axis.

    在這個圖上,就是圖形通過x軸的地方

  • As we can see, our parabola actually never crosses the x-axis,

    我們可以看到,這個拋物線其實不會經過x軸

  • so according to our plot, there are no solutions to the equation x^2+1=0.

    所以根據這圖型,我們的這個方程式x^2+1=0是無解的

  • But there's a small problem.

    但是這有一個小問題

  • A little over 200 years ago a smart guy named Gauss

    兩千多年以前,一個聰明的傢伙叫做高斯

  • proved that every polynomial equation of degree n

    他證明了對一個最高n次方的多項式來說

  • has exactly n roots.

    應該剛好有n個根

  • Our polynomial has a highest power, or degree, of two,

    我們的這個多項式最高次方是2

  • so we should have two roots.

    所以應當有兩個根才是

  • And Gauss' discovery is not just some random rule,

    而高斯的發現並不是隨隨便便的規則

  • today we call it the FUNDAMENTAL THEOREM OF ALGEBRA.

    今天這被稱之為 “代數的基本定理“

  • So our plot seems to disagree with something so important it's called the FUNDAMENTAL THEOREM OF ALGEBRA,

    所以難道我們的這張圖難道違反了“代數的基本定理”?

  • which might be a problem.

    這一定有一些小小的誤會

  • What Guass is telling us here, is that there are two perfectly good values of x

    高斯所告訴我們的是我們應當可以找到兩個剛剛好的值

  • that we could plug into our function, and get zero out.

    帶入方程式之後,消去之後可以得到0

  • Where could these 2 missing roots be?

    那這兩個根到底躲到哪裡去了呢?

  • The short answer here is that we don't have enough numbers.

    簡單地說就是我們沒有足夠的數字

  • We typically think of numbers existing on a 1 dimensional continuum - the number line.

    一般來說我們把數字想像成存在於一條連續的線—-數線上

  • All our friends are here: 0, 1,

    我們的數字小朋友們如 0 和 1

  • negative numbers, fractions, even irrational numbers like root 2 show up.

    負數和分數,即便是無理數如根號2

  • --

    都在這條線上站了一個小小的位置

  • But this system is incomplete.

    但是這樣的系統並不完整

  • And our missing numbers are not just further left or right,

    我們的那兩個數字小朋友到底躲到什麼地方去了呢?

  • -

    他們並不是在更左邊或更右邊

  • they live in a whole new dimension.

    他們是在一個全新的維度

  • Algebraically, this new dimension

    依照代數學來說,這個全新的維度

  • has everything to do with a problem that was mathematically considered impossible for over two thousand years:

    可以讓我們解答這個幾乎兩千年來數學上認為不可能的事

  • the square root of negative one.

    -1的平方根

  • When we include this missing dimension in our analysis,

    就讓我們加入這個消失的維度

  • our parabola gets way more interesting.

    這樣子,我們的拋物線將會變得非常有趣.

  • Now that our input numbers are in their full two dimensional form,

    既然我們的數字總共有了兩個維度

  • we see how our function x^2+1 really behaves.

    我們來看看我們的方程式 x^2+1現在變成什麼樣子

  • And we can now see that our function does have exactly two roots!

    現在我們的方程式的確通過 x軸

  • We were just looking in the wrong dimension.

    我們之前只是從一個錯誤的維度看過去

  • So, why is this extra dimension that numbers possess not common knowledge?

    所以,為什麼大家都不認識數字的這一個額外的維度呢?

  • Part of this reason is that it has been given a terrible, terrible name.

    部分的原因是因為他們被取了一個很糟糕的名字

  • A name that suggest that these numbers aren't ever real!

    讓它們看起來一點也不真實

  • In fact, Gauss himself had something to say about this naming convention.

    事實上,高斯自己對於這件事可有點話要說

  • So yes, this missing dimension is comprised of numbers that have been given ridiculous name imaginary.

    沒錯,消失的維度就是由這個叫作虛數的數字所構成的

  • Gauss proposed these numbers should instead be given the name lateral

    高斯提議這些數字應當改名叫做側數

  • so from here on, let's let lateral mean imaginary.

    所以現在我就用側數來稱呼虛數

  • To get a better handle on imaginary,

    為了要對虛數更有感覺一點

  • I mean, lateral numbers,

    喔,我的意思是側數

  • and really understand what's going on here,

    同時對於接下的內容更容易理解

  • let's spend a little time thinking about numbers.

    我們花一點時間來瞭解一下數字

  • Early humans really only had use for the natural numbers, that is 1, 2, 3, and so on.

    古代人類只會使用自然的數字,1 2 3 等

  • This makes sense because of how numbers were used.

    這很說得通,因為數字就是這樣用的

  • So to early humans, the number line would have just been a series of dots.

    所以早期人類的數線上只有一些點而已

  • As civilizations advanced,

    當文明越來越進步

  • people needed answers to more sophisticated math questions

    人們越來越需要數學來回答一些複雜的問題

  • ike when to plant seeds,

    例如什麼時候要播種了

  • how to divide land, and how to keep track of financial transactions.

    土地該怎麼分配,還有有金錢交易要如何記帳

  • The natural numbers just weren’t cutting it anymore,

    自然數漸漸的就不夠用了

  • so the Egyptians innovated

    因此古埃及人發揮他們的創意

  • and developed a new, high tech solution: fractions.

    發展了一個全新的高科技:分數

  • Fractions filled in the gaps in our number line,

    分數幫我們填滿了數線上的空隙

  • and were basically cutting edge technology for a couple thousand years.

    而且基本上,在幾千年間,他是最先進的高科技

  • The next big innovations to hit the number line were the number zero and negative numbers,

    下一個數線上的大發明是數字零和負數

  • but it took some time to get everyone on board.

    但是我們可是花了好多時間讓大夥都上了道

  • Since it’s not obvious what these numbers mean

    因為這些數字代表的意義可不是那麼明顯

  • or how they fit into the real world,

    他們代表的意義比較抽象一點

  • zero and negative numbers were met with skepticism,

    零和負數讓人很懷疑

  • and largely avoided or ignored .

    而且很多人避免使用他,忽視它們

  • Some cultures were more suspicious than others,

    一些文明對於他們比較猜疑

  • depending largely on how people viewed the connection between mathematics and reality.

    一大部分是取決於人們如何看待數學和真實世界的連結

  • And this is not all ancient history -

    這可不是發生在真正的古代

  • just a few centuries ago,

    只不過是幾世紀前

  • mathematicians would intentionally move terms around to avoid having negatives show up in equations.

    數學家會故意用移項來避免他們的等式裡出現負數

  • Suspicion of zero and negative numbers did eventually fade -

    最終對於零和負數的猜疑逐漸地淡去了

  • partially because negatives are useful for expressing concepts like debt,

    部分原因是因為負數對於代表負債時特別有用

  • but mostly because negatives just kept sneaking into mathematics.

    但是絕大多數是因為負數已經漸漸地深入到很多數學中

  • It turns out there’s just a whole lot of math you just can’t do

    結果就是如果你不讓負數參一腳的話

  • if you don’t allow negative numbers to play.

    很多數學運算你都沒辦法做

  • Without negatives, simple algebra problems like x + 3 = 2 have no answer.

    如果沒有負數,像x + 3 = 2 的簡單代數就無解了

  • Before negatives were accepted,

    如果你不接納負數的存在

  • this problem would have no solution,

    這個式子就沒有解

  • just like we thought our original problem had no solution.

    就像我們原來的式子一樣

  • The thing is, it’s not crazy or weird to think problems like this have no solutions

    其實是這樣的,認為這樣的問題沒有解答並不瘋狂

  • in words, this algebra problem basically says:

    這個代數問題其實可以這樣詮釋:

  • if I have 2 things and I take away 3, how many things do I have left?”

    如果我有兩個東西,我拿走了三個,那還剩下幾個呢?

  • It’s not surprising that most of the people who have lived on our planet would be suspicious of questions like this.

    一般地球人大概都會很懷疑怎麼會有這種問題

  • These problems don’t make any sense.

    因為這一點意義也沒有

  • Even brilliant mathematicians of the 18th century, such as Leonard Euler,

    即便是十八世紀最聰明的數學家--李奧納多 歐拉

  • didn’t really know what to do with negatives

    也不知道要怎麼處理負數

  • he at one point wrote that negatives were greater than infinity.

    他一度還把負數當作是比無限大還要大

  • So it’s fair to say that

    我們可以這麼說

  • negative and imaginary numbers raise a lot of very good, very valid questions.

    負數和虛數的確給我們帶來了很多很好的問題

  • -

    讓我們思考

  • Like why do we require students to understand and work with numbers

    例如,這些問題已被最偉大的數學家逃避了幾千年

  • Like why do we require students to understand and work with numbers

    為什麼我們還要求學生們去了解它們

  • -

    用它們來運算

  • Why did we even come accept negative and imaginary numbers in the first place,

    既然它們和現實世界幾乎毫不相關

  • when they don’t really seem connected to anything in the real world?

    為什麼我們卻先接受它們呢?

  • And how do these extra numbers help explain the missing solutions to our problem?

    這些缺少的數字如何能夠合理解釋我們的問題呢?

  • Next time, well begin to address these questions

    下一次我們會來談談這些問題

  • by going way back to the discovery of complex numbers.

    我們會回到以前來看看複數是怎麼發現的

  • -

    [結束-中文翻譯:游國仁]

Imaginary Numbers Are Real [Part 1: Introduction]

虛數它一點也不虛 [第一部分:介紹]

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋