Placeholder Image

字幕列表 影片播放

  • Well, it's great to be here.

    很高興能來到這裡。我們聽過一些

  • We've heard a lot about the promise of technology, and the peril.

    關於科技可以讓生活更美好的承諾,也有人說它會引發災難

  • I've been quite interested in both.

    我個人對這兩種觀點都深感興趣

  • If we could convert 0.03 percent

    如果到達地球的太陽光的百分之0.03

  • of the sunlight that falls on the earth into energy,

    可以被轉換成能源

  • we could meet all of our projected needs for 2030.

    這些能源將可以滿足人類在2030 年的能源需求

  • We can't do that today because solar panels are heavy,

    然而,這個想法目前無法達成,理由是太陽能板既重

  • expensive and very inefficient.

    又昂貴,而且效率很低

  • There are nano-engineered designs,

    雖然還是在理論分析階段,

  • which at least have been analyzed theoretically,

    但是奈米工程已經設計出

  • that show the potential to be very lightweight,

    可以讓太陽能板變輕

  • very inexpensive, very efficient,

    便宜又有效率的方法

  • and we'd be able to actually provide all of our energy needs in this renewable way.

    這種再生能源將可以滿足人們所有的能源需求

  • Nano-engineered fuel cells

    而奈米燃料電池

  • could provide the energy where it's needed.

    也可以在任何地方提供能源

  • That's a key trend, which is decentralization,

    這些分散式的能源供給將成為關鍵的趨勢

  • moving from centralized nuclear power plants and

    從集中式的核能電廠

  • liquid natural gas tankers

    和液態天然瓦斯槽

  • to decentralized resources that are environmentally more friendly,

    轉變成分散式的天然資源。它們不僅更環保、

  • a lot more efficient

    效能佳

  • and capable and safe from disruption.

    而且能避免能源系統中斷的隱憂

  • Bono spoke very eloquently,

    Bono 曾明確地表示

  • that we have the tools, for the first time,

    疾病和貧窮的問題存在已久

  • to address age-old problems of disease and poverty.

    這是第一次,我們人類掌握了解決這些問題的工具

  • Most regions of the world are moving in that direction.

    在世界上大部分的地區也顯示出這樣的趨勢

  • In 1990, in East Asia and the Pacific region,

    在1990 年時,東亞及太平洋地區

  • there were 500 million people living in poverty --

    有五億的人口處於貧窮狀態

  • that number now is under 200 million.

    如今已經降至二億人以下

  • The World Bank projects by 2011, it will be under 20 million,

    世界銀行預期2011 年這些貧窮人口將低於二千萬

  • which is a reduction of 95 percent.

    也就是降低了 95%

  • I did enjoy Bono's comment

    我很喜歡Bono 的說法

  • linking Haight-Ashbury to Silicon Valley.

    他將舊金山嬉皮區 Haight-Ashbury 和加州的矽谷相比

  • Being from the Massachusetts high-tech community myself,

    我來自麻州的高科技園區

  • I'd point out that we were hippies also in the 1960s,

    我要指出我們在 1960 年代也曾經是嬉皮

  • although we hung around Harvard Square.

    差別只是我們是在哈佛廣場閒蕩

  • But we do have the potential to overcome disease and poverty,

    我們確實有能力去對抗疾病與貧窮

  • and I'm going to talk about those issues, if we have the will.

    只要我們有決心。這些是我將討論的主題

  • Kevin Kelly talked about the acceleration of technology.

    Kevin Kelly 曾探討科技的加速進展過程

  • That's been a strong interest of mine,

    我對這個主題有強烈的興趣

  • and a theme that I've developed for some 30 years.

    也研究了三十年

  • I realized that my technologies had to make sense when I finished a project.

    我體認到研究的成果必須有所貢獻

  • That invariably, the world was a different place

    然而,每當我要導入新科技時

  • when I would introduce a technology.

    卻發現世界已經不一樣了

  • And, I noticed that most inventions fail,

    我發現大部份的發明都是失敗的

  • not because the R&D department can't get it to work --

    並非是因為研發部門沒有達成目標

  • if you look at most business plans, they will actually succeed

    如果你去分析,會看到大部份的商業計畫實際上能達成目標

  • if given the opportunity to build what they say they're going to build --

    但前提是計畫要有機會依照原先設定的目標時去執行

  • and 90 percent of those projects or more will fail, because the timing is wrong --

    但90%甚至更多的計畫都失敗了,原因就是時機錯誤

  • not all the enabling factors will be in place when they're needed.

    在需要時總會欠缺一些關鍵性的成功因素

  • So I began to be an ardent student of technology trends,

    我像個熱切的學生,研究起科技的趨勢

  • and track where technology would be at different points in time,

    我追蹤在什麼時間點,科技會呈現什麼面貌

  • and began to build the mathematical models of that.

    並建立起它的數學模型,

  • It's kind of taken on a life of its own.

    把整個科技發展的過程呈現出來

  • I've got a group of 10 people that work with me to gather data

    我的團隊有十個人,我們蒐集資料

  • on key measures of technology in many different areas, and we build models.

    看一些關鍵的科技如何運在各個領域,然後建立模型

  • And you'll hear people say, well, we can't predict the future.

    你會聽到人們說,”我們是不可能預測未來的”

  • And if you ask me,

    如果你問我

  • will the price of Google be higher or lower than it is today three years from now,

    三年後Google 的股價會上升還是下跌?

  • that's very hard to say.

    那真的很難預測

  • Will WiMax CDMA G3

    WiMax CDMA G3

  • be the wireless standard three years from now? That's hard to say.

    會成為無線協定嗎?這也很難說

  • But if you ask me, what will it cost

    但是,如果你問我

  • for one MIPS of computing in 2010,

    2010年時,一個計算用的MIPS 會值多少錢?

  • or the cost to sequence a base pair of DNA in 2012,

    或是在2012年,DNA一基本對的序列的成本是多少?

  • or the cost of sending a megabyte of data wirelessly in 2014,

    或是無線傳送百萬位元在2014 年要花費多少?

  • it turns out that those are very predictable.

    這些問題就很容易預測了

  • There are remarkably smooth exponential curves

    性能價格比,處理容量與頻寬間

  • that govern price performance, capacity, bandwidth.

    呈現非常平滑的指數曲線關係

  • And I'm going to show you a small sample of this,

    我給你們看一個小範例

  • but there's really a theoretical reason

    它顯示出理論上

  • why technology develops in an exponential fashion.

    科技是以指數模式在發展

  • And a lot of people, when they think about the future, think about it linearly.

    但多數人卻是用線性的模式在預測未來

  • They think they're going to continue

    他們以為

  • to develop a problem

    處理或解決一個難題

  • or address a problem using today's tools,

    只能用現有的工具

  • at today's pace of progress,

    和現有的步調

  • and fail to take into consideration this exponential growth.

    卻忽略到了指數型成長的因素

  • The Genome Project was a controversial project in 1990.

    基因組計畫在 1990 年時是個很受爭議的計畫

  • We had our best Ph.D. students,

    雖然擁有最好的博士班學生、

  • our most advanced equipment around the world,

    世界上最先進的儀器

  • we got 1/10,000th of the project done,

    卻只完成了計畫的萬分之一

  • so how're we going to get this done in 15 years?

    那怎麼可能在15 年內完成這個計畫?

  • And 10 years into the project,

    十年過去了

  • the skeptics were still going strong -- says, "You're two-thirds through this project,

    人們的質疑依舊強烈。他們說:計畫已經過了 2/3

  • and you've managed to only sequence

    但只勉強地完成了

  • a very tiny percentage of the whole genome."

    很少部份的基因組序列

  • But it's the nature of exponential growth

    然而,這正是指數型成長的特性

  • that once it reaches the knee of the curve, it explodes.

    一但到達曲線彎曲點,它就一躍而上

  • Most of the project was done in the last

    計畫的大部份都在是在最後幾年才完成的

  • few years of the project.

    幾年才完成的

  • It took us 15 years to sequence HIV --

    HIV 愛滋病毒的序列耗費了15 年

  • we sequenced SARS in 31 days.

    但我們在31 天內就完成 SARS 的序列

  • So we are gaining the potential to overcome these problems.

    所以,我們是有能力去克服這些問題的

  • I'm going to show you just a few examples

    我給你看一些例子

  • of how pervasive this phenomena is.

    來證明這樣的現象是很普遍的。根據我們的模型,

  • The actual paradigm-shift rate, the rate of adopting new ideas,

    實際的典範轉移率 - 採用新觀念的比例

  • is doubling every decade, according to our models.

    每十年就呈倍數成長

  • These are all logarithmic graphs,

    這些都是對數的圖形

  • so as you go up the levels it represents, generally multiplying by factor of 10 or 100.

    在達到相對的程度後,通常會以十倍速或百倍的速度變化

  • It took us half a century to adopt the telephone,

    第一個虛擬實境技術-電話

  • the first virtual-reality technology.

    花了半個世紀的時間,才開始普及

  • Cell phones were adopted in about eight years.

    但是手機只花了八年就被普遍使用

  • If you put different communication technologies

    將不同的通訊科技

  • on this logarithmic graph,

    放在這個對數圖表上

  • television, radio, telephone

    會發現電視、收音機跟電話的普及過程

  • were adopted in decades.

    都要花上數十年的時間

  • Recent technologies -- like the PC, the web, cell phones --

    而新科技,像是電腦,網路跟手機

  • were under a decade.

    在十年內就被廣泛接納了

  • Now this is an interesting chart,

    這個圖表很有意思

  • and this really gets at the fundamental reason why

    他說明了演化過程的基本原理

  • an evolutionary process -- and both biology and technology are evolutionary processes --

    無論是生物演化或是科技演化

  • accelerate.

    都是以加速度進行的

  • They work through interaction -- they create a capability,

    透過交互作用,他們創造能力

  • and then it uses that capability to bring on the next stage.

    再用這個能力來改變下個階段

  • So the first step in biological evolution,

    生物演化的第一步

  • the evolution of DNA -- actually it was RNA came first --

    就是DNA 的演化,實際上是從 RNA開始的

  • took billions of years,

    這個歷程歷經數十億年

  • but then evolution used that information-processing backbone

    在這個已形成的資訊處理的架構下

  • to bring on the next stage.

    演化持續推展至下一個階段

  • So the Cambrian Explosion, when all the body plans of the animals were evolved,

    所以在寒武紀大爆發時,動物的身體結構

  • took only 10 million years. It was 200 times faster.

    在一千萬年之間就建構完成。足足快了兩百倍

  • And then evolution used those body plans

    接著,演化在這已身體架構上

  • to evolve higher cognitive functions,

    建構出更高階的認知功能

  • and biological evolution kept accelerating.

    生物的演化持續地加速進行

  • It's an inherent nature of an evolutionary process.

    這就是演化與生俱來的天性

  • So Homo sapiens, the first technology-creating species,

    第一個具備創造科技能力的物種-智人

  • the species that combined a cognitive function

    已經結合了認知的功能

  • with an opposable appendage --

    以及可以與四指相對的拇指

  • and by the way, chimpanzees don't really have a very good opposable thumb --

    順便一提,大猩猩的拇指無法很好的與其他四指相對

  • so we could actually manipulate our environment with a power grip

    我們因為具備很強的握力和細緻的操控力

  • and fine motor coordination,

    所以才能對抗環境

  • and use our mental models to actually change the world

    同時運用我們的心智來改變世界

  • and bring on technology.

    並發展科技

  • But anyway, the evolution of our species took hundreds of thousands of years,

    總而言之,物種的演化花了數十萬年

  • and then working through interaction,

    然後透過交互影響和演化的作用

  • evolution used, essentially,

    和演化的作用

  • the technology-creating species to bring on the next stage,

    這個能創造科技的物種已經可以帶來新階段的發展了

  • which were the first steps in technological evolution.

    這個階段就是科技演化的第一步

  • And the first step took tens of thousands of years --

    而這一步僅花了數千年

  • stone tools, fire, the wheel -- kept accelerating.

    從石製工具到輪軸,變化持續加速著

  • We always used then the latest generation of technology

    我們總是用上一階段的科技

  • to create the next generation.

    來創造下一階段

  • Printing press took a century to be adopted;

    印刷科技花了一個世紀才普及

  • the first computers were designed pen-on-paper -- now we use computers.

    第一台電腦是靠筆和紙設計出來的。而現今電腦變成我們的工具

  • And we've had a continual acceleration of this process.

    我們正在持續加速這樣的過程,順便一提

  • Now by the way, if you look at this on a linear graph, it looks like everything has just happened,

    你觀察這個線性圖形,似乎是每件事情都才剛剛發生

  • but some observer says, "Well, Kurzweil just put points on this graph

    於是有些觀察家說” 喔 Kurzweil 只不過是把一些點放在圖表上

  • that fall on that straight line."

    然後,剛好變成一條直線而已

  • So, I took 15 different lists from key thinkers,

    所以,我列出十五份重要思想家的名單

  • like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar

    名單選自大英百科全書、自然歷史博物館,卡爾沙根的宇宙日曆

  • on the same -- and these people were not trying to make my point;

    這些人並沒有要為我的觀點背書

  • these were just lists in reference works,

    他們都選自參考文獻中的作者列表

  • and I think that's what they thought the key events were

    我想他們也會認同重要的關鍵在

  • in biological evolution and technological evolution.

    生物演化和科技演化

  • And again, it forms the same straight line. You have a little bit of thickening in the line

    再一次地,這些都形成了直線。你看到一些

  • because people do have disagreements, what the key points are,

    較粗的直線,是因為人們對於關鍵點有些疑義

  • there's differences of opinion when agriculture started,

    像是農業開始發展的時間點

  • or how long the Cambrian Explosion took.

    或是寒武紀到底持續多久

  • But you see a very clear trend.

    然而,這個趨勢卻是相當顯著的

  • There's a basic, profound acceleration of this evolutionary process.

    這個演化的加速過程是根本且深遠的

  • Information technologies double their capacity, price performance, bandwidth,

    在資訊科技界,容量、性能價格比和頻寬

  • every year.

    每年都加倍成長

  • And that's a very profound explosion of exponential growth.

    這就指數型態的爆炸性成長

  • A personal experience, when I was at MIT --

    以我個人的經驗,當年我在麻省理工時

  • computer taking up about the size of this room,

    電腦大約是一個房間的大小

  • less powerful than the computer in your cell phone.

    性能也比不上你們現在的手機

  • But Moore's Law, which is very often identified with this exponential growth,

    摩爾定律的概念和這個指數成長的概念非常相似

  • is just one example of many, because it's basically

    但也只是眾多例子中的一個

  • a property of the evolutionary process of technology.

    基本上,它只是科技演化發展的基本特性之一

  • I put 49 famous computers on this logarithmic graph --

    如果我們將49 台著名的電腦放到這個對數圖表上

  • by the way, a straight line on a logarithmic graph is exponential growth --

    順便一提,這個對數圖表上的線是指數成長的

  • that's another exponential.

    這是另一個指數型的範例

  • It took us three years to double our price performance of computing in 1900,

    在1900年,電腦的性能價格比花了三年才提升一倍

  • two years in the middle; we're now doubling it every one year.

    中間的兩年,現在我們每年都可以提升一倍

  • And that's exponential growth through five different paradigms.

    這五個不同的範例都顯示了指數型態的增長

  • Moore's Law was just the last part of that,

    摩爾的定律只說明了這個定律的後半部

  • where we were shrinking transistors on an integrated circuit,

    也就是說在積體電路的發展中,電晶體的尺寸不斷地縮減

  • but we had electro-mechanical calculators,

    但我們是在經歷過電子機械式的計算機

  • relay-based computers that cracked the German Enigma Code,

    取代德國密碼機的繼電器型電腦

  • vacuum tubes in the 1950s predicted the election of Eisenhower,

    1950 年代就能預測艾森豪選舉的真空管電腦

  • discreet transistors used in the first space flights

    用於首次太空飛行的分立電晶體之後

  • and then Moore's Law.

    才有了摩爾定律

  • Every time one paradigm ran out of steam,

    每當一個範例的發展到了限度

  • another paradigm came out of left field to continue the exponential growth.

    另一個範例就接著進入指數成長期

  • They were shrinking vacuum tubes, making them smaller and smaller.

    真空管尺寸被縮小,更小還要再小

  • That hit a wall. They couldn't shrink them and keep the vacuum.

    到達一個瓶頸後,當真空管不能再更小了,我們就放棄真空管

  • Whole different paradigm -- transistors came out of the woodwork.

    全新型態的電晶體開始崛起

  • In fact, when we see the end of the line for a particular paradigm,

    事實上,每當一種例子到達發展的頂端時

  • it creates research pressure to create the next paradigm.

    就是新產品的研發的壓力

  • And because we've been predicting the end of Moore's Law

    長期以來,我們一直在預測後摩爾定律時代的降臨

  • for quite a long time -- the first prediction said 2002, until now it says 2022.

    一開始預測是2002 年,現在又說是2012 年

  • But by the teen years,

    在10 年內

  • the features of transistors will be a few atoms in width,

    電晶體的寬度就會變得跟幾個原子的寬度一樣

  • and we won't be able to shrink them any more.

    已經沒有辦法再被縮小

  • That'll be the end of Moore's Law, but it won't be the end of

    這是摩爾定律的結束

  • the exponential growth of computing, because chips are flat.

    但不是運算指數型態成長的結束。因為晶片是平的

  • We live in a three-dimensional world; we might as well use the third dimension.

    而我們處在三度的立體空間,我們可以利用第三度空間

  • We will go into the third dimension

    我們將會走入第三度空間

  • and there's been tremendous progress, just in the last few years,

    並獲得極大的進展,就像我們過去幾年一樣

  • of getting three-dimensional, self-organizing molecular circuits to work.

    我們將完成在三度空間的自組式的分子電路。

  • We'll have those ready well before Moore's Law runs out of steam.

    在摩爾定律到達極限前,這些科技就會準備好

  • Supercomputers -- same thing.

    同樣的事情也曾發生在超級電腦上

  • Processor performance on Intel chips,

    英代爾的處理器上

  • the average price of a transistor --

    電晶體的平均價格

  • 1968, you could buy one transistor for a dollar.

    在1968 年是一美金一個電晶體

  • You could buy 10 million in 2002.

    在 2002 年時,同樣的價格可以買到一千萬個

  • It's pretty remarkable how smooth

    這個指數發展的過程

  • an exponential process that is.

    顯得如此平順

  • I mean, you'd think this is the result of some tabletop experiment,

    以至於被認為這只是實驗桌上做出來的實驗數據

  • but this is the result of worldwide chaotic behavior --

    但這分析的資料其實來自發生在世界各地的各種混沌行為

  • countries accusing each other of dumping products,

    包括國際間互相指責傾銷

  • IPOs, bankruptcies, marketing programs.

    公開募股、破產及行銷策略

  • You would think it would be a very erratic process,

    這些通常被認為是沒有章法的過程

  • and you have a very smooth

    然而這混亂的過程卻形成了

  • outcome of this chaotic process.

    一個相當平順的結果

  • Just as we can't predict

    就像,我們也許無法預測

  • what one molecule in a gas will do --

    一個氣體內的分子的行為

  • it's hopeless to predict a single molecule --

    預測單一分子是不可能的

  • yet we can predict the properties of the whole gas,

    然而,我們卻可以用熱電學

  • using thermodynamics, very accurately.

    非常準確地預測氣體的整體特性

  • It's the same thing here. We can't predict any particular project,

    同樣地,我們無法預測單一特定的計畫

  • but the result of this whole worldwide,

    然而這整個世界

  • chaotic, unpredictable activity of competition

    這些混亂又無法預測的競爭行為

  • and the evolutionary process of technology is very predictable.

    還有這個科技演化的過程卻都是可以預期的

  • And we can predict these trends far into the future.

    而且,我們得到的這個趨勢也適用於未來

  • Unlike Gertrude Stein's roses,

    和格特鲁德•斯泰因的玫瑰不同,

  • it's not the case that a transistor is a transistor.

    電晶體不僅僅只是一個電晶體

  • As we make them smaller and less expensive,

    當我們讓它變小變便宜之後

  • the electrons have less distance to travel.

    電子間移動的距離變小了

  • They're faster, so you've got exponential growth in the speed of transistors,

    它們變的更快,所以在電晶體的速度上就呈現了指數型進展。

  • so the cost of a cycle of one transistor

    電晶體的周期成本

  • has been coming down with a halving rate of 1.1 years.

    在1.1年內下降到一半

  • You add other forms of innovation and processor design,

    加上其他形式的發明跟處理器設計

  • you get a doubling of price performance of computing every one year.

    電腦產品的性能價格比每年都提升一倍

  • And that's basically deflation --

    這是最基本的通貨緊縮

  • 50 percent deflation.

    - 50百分比的通貨緊縮

  • And it's not just computers. I mean, it's true of DNA sequencing;

    這不僅僅是發生在電腦產業。也發生在DNA序列上

  • it's true of brain scanning;

    在大腦掃描上

  • it's true of the World Wide Web. I mean, anything that we can quantify,

    在網際網路上也都有同樣的情形。任何可以被量化的東西

  • we have hundreds of different measurements

    數百種的指標

  • of different, information-related measurements --

    和資訊相關的指標

  • capacity, adoption rates --

    無論容量或是採用率

  • and they basically double every 12, 13, 15 months,

    依照項目的相異,它們分別以每隔12,13,15 個月

  • depending on what you're looking at.

    就加倍的速度成長

  • In terms of price performance, that's a 40 to 50 percent deflation rate.

    至於性能價格比,則是呈現50- 約40-50 的緊縮幅度

  • And economists have actually started worrying about that.

    經濟學家已經開始擔心這個現象

  • We had deflation during the Depression,

    大蕭條時期我們曾經歷過經濟緊縮

  • but that was collapse of the money supply,

    但是那是導因於貨幣供給系統的崩潰

  • collapse of consumer confidence, a completely different phenomena.

    它也摧毀了消費者信心,是截然不同的現象

  • This is due to greater productivity,

    這次則是因為生產力大增所致

  • but the economist says, "But there's no way you're going to be able to keep up with that.

    但是經濟學家依舊認為:”我們不可能跟得上這個變化的腳步

  • If you have 50 percent deflation, people may increase their volume

    當物價有50% 的通貨緊縮

  • 30, 40 percent, but they won't keep up with it."

    人們就會增加 30%-40% 的消費,人們不可能一直跟得上這個變化”

  • But what we're actually seeing is that

    可是,事實顯示

  • we actually more than keep up with it.

    我們不僅跟上這個變化

  • We've had 28 percent per year compounded growth in dollars

    在過去50 年,花在資訊科技上的消費

  • in information technology over the last 50 years.

    還呈現了28%的複合性成長

  • I mean, people didn't build iPods for 10,000 dollars 10 years ago.

    我的意思是,10 年前,沒有人會花一萬美金去買ipod

  • As the price performance makes new applications feasible,

    但是當性能價格提升到某種程度

  • new applications come to the market.

    新發明的應用就會很合理而進入市場

  • And this is a very widespread phenomena.

    這現象非常廣泛

  • Magnetic data storage --

    雖然不適用摩爾定律

  • that's not Moore's Law, it's shrinking magnetic spots,

    但是在磁記錄媒體方面,磁點的尺寸也正持續縮減中

  • different engineers, different companies, same exponential process.

    相異的工程師與相異的公司,都依循相同的指數模式在進展

  • A key revolution is that we're understanding our own biology

    另一個關鍵性的變革是我們開始運用資訊科技

  • in these information terms.

    來解讀生物學

  • We're understanding the software programs

    我們正在學習

  • that make our body run.

    讓我們身體運作的軟體

  • These were evolved in very different times --

    這些軟體是在不同的時期逐漸發展起來的

  • we'd like to actually change those programs.

    我們卻想要改變身體運作的程式

  • One little software program, called the fat insulin receptor gene,

    有個小軟體程式叫做脂肪胰島素受體基因

  • basically says, "Hold onto every calorie,

    基本上,它發出的訊息是:”維持住卡洛里

  • because the next hunting season may not work out so well."

    因為下一個狩獵季可能什麼都獵不到”

  • That was in the interests of the species tens of thousands of years ago.

    在數萬年前,這個機能上是對物種有益的

  • We'd like to actually turn that program off.

    現在,我們想關掉這個機能

  • They tried that in animals, and these mice ate ravenously

    我們在動物上實驗,讓老鼠們大口大口的吃,

  • and remained slim and got the health benefits of being slim.

    卻能保持苗條。因為體態輕盈而老鼠還保持了健康

  • They didn't get diabetes; they didn't get heart disease;

    沒有糖尿病,沒有心臟病

  • they lived 20 percent longer; they got the health benefits of caloric restriction

    牠們甚至延長了20% 的年紀。要限制熱量攝取才能得到的健康

  • without the restriction.

    這些老鼠無需限制熱量也依舊保有

  • Four or five pharmaceutical companies have noticed this,

    四到五家的製藥公司注意到這一點

  • felt that would be

    他們覺得

  • interesting drug for the human market,

    這對人類的市場將會是個有趣的藥品

  • and that's just one of the 30,000 genes

    而這只不過是影響我們生物化學的3萬個基因

  • that affect our biochemistry.

    其中的一個

  • We were evolved in an era where it wasn't in the interests of people

    我們所處的世代,並不是為了

  • at the age of most people at this conference, like myself,

    讓那些與參加這會議的大多數人相似年紀的人,例如我本人

  • to live much longer, because we were using up the precious resources

    活得更長久而考量。因為我們正在耗盡人類的珍貴資源

  • which were better deployed towards the children

    這些資源原本是預留給我們的下一代的兒童

  • and those caring for them.

    和那些珍惜資源的人

  • So, life -- long lifespans --

    超過三十歲

  • like, that is to say, much more than 30 --

    的長壽生命

  • weren't selected for,

    並不是自然界物競天擇的結果

  • but we are learning to actually manipulate

    而是由於我們在生物科技革命中

  • and change these software programs

    已經學到如何操縱

  • through the biotechnology revolution.

    並改變這些軟體的技能

  • For example, we can inhibit genes now with RNA interference.

    舉例來說,我們已經懂得用RNA干擾去抑制基因

  • There are exciting new forms of gene therapy

    新型態的基因治療法令人雀躍,

  • that overcome the problem of placing the genetic material

    它們已經能成功地

  • in the right place on the chromosome.

    將遺傳物質置於正確的染色體位置

  • There's actually a -- for the first time now,

    這是第一次,基因治療

  • something going to human trials, that actually cures pulmonary hypertension --

    真的在人體試驗中治癒了肺動脈高血壓

  • a fatal disease -- using gene therapy.

    這種致命的疾病

  • So we'll have not just designer babies, but designer baby boomers.

    所以我們不僅有訂造的嬰兒,還會有訂造的嬰兒潮

  • And this technology is also accelerating.

    目前這個科技也在加速中

  • It cost 10 dollars per base pair in 1990,

    1990 年基因複製時鹼基的成本是10 美金

  • then a penny in 2000.

    到2000年時只要一分錢

  • It's now under a 10th of a cent.

    現在則是一分錢的十分之一

  • The amount of genetic data --

    基因資料的數量

  • basically this shows that smooth exponential growth

    也顯示出每年增加一倍

  • doubled every year,

    的指數型成長

  • enabling the genome project to be completed.

    促成基因組計畫的實現

  • Another major revolution: the communications revolution.

    另一個重大的革命就是通訊革命

  • The price performance, bandwidth, capacity of communications measured many different ways;

    用通訊的性能價格比、頻寬和容量可以顯示出不同層次的進展

  • wired, wireless is growing exponentially.

    有線和無線通訊的數量都是以指數型式增長

  • The Internet has been doubling in power and continues to,

    在耗用的電力和其他方面的數據

  • measured many different ways.

    也都顯示網際網路的發展已經增加一倍

  • This is based on the number of hosts.

    這圖表是以主機的數量為基準

  • Miniaturization -- we're shrinking the size of technology

    微型化 - 科技產品的尺寸

  • at an exponential rate,

    正以指數的倍率縮小

  • both wired and wireless.

    無論是有線或無線。

  • These are some designs from Eric Drexler's book --

    德萊思勒書中有一些設計

  • which we're now showing are feasible

    經過超級電腦的模擬

  • with super-computing simulations,

    已經證明是合理可行的

  • where actually there are scientists building

    科學家們已經開始製造

  • molecule-scale robots.

    分子機器人

  • One has one that actually walks with a surprisingly human-like gait,

    其中一具分子機器人甚至可以用人類的步伐行走

  • that's built out of molecules.

    甚至可以用人類的步伐行走

  • There are little machines doing things in experimental bases.

    實驗室裡的小機器也有了實用的機能

  • The most exciting opportunity

    最令人興奮的是

  • is actually to go inside the human body

    機器人已經可以進入人體

  • and perform therapeutic and diagnostic functions.

    進行治療跟診斷

  • And this is less futuristic than it may sound.

    聽起來像是遙遠未來才能實現的功能其實並不遙遠

  • These things have already been done in animals.

    有些已經運用在動物身上了

  • There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.

    有種奈米工程的裝置可以治療第一型糖尿病,大小和血球相近

  • They put tens of thousands of these

    它已經在老鼠上進行實驗。數萬個這種裝置

  • in the blood cell -- they tried this in rats --

    被放於血球中

  • it lets insulin out in a controlled fashion,

    它們控制胰島素以適當的速度釋放

  • and actually cures type 1 diabetes.

    以治療第一型的糖尿病

  • What you're watching is a design

    這是人造紅血球

  • of a robotic red blood cell,

    的其中一種

  • and it does bring up the issue that our biology

    這類人造的紅血球引發新的議論

  • is actually very sub-optimal,

    雖然生物的構造已錯綜複雜

  • even though it's remarkable in its intricacy.

    但並非處在最佳狀態

  • Once we understand its principles of operation,

    一旦我們了解這個準則

  • and the pace with which we are reverse-engineering biology is accelerating,

    而生物學的逆向工程也加速進展

  • we can actually design these things to be

    比現今功能強數千倍的能力

  • thousands of times more capable.

    都可能達成

  • An analysis of this respirocyte, designed by Rob Freitas,

    一個針對Freitas博士設計的人造红血球的分析指出

  • indicates if you replace 10 percent of your red blood cells with these robotic versions,

    如果以人造紅血球取代人體血液中的紅血球的10%

  • you could do an Olympic sprint for 15 minutes without taking a breath.

    你可以在奧運比賽中可以連續衝刺15 分鐘而不用換上一口氣

  • You could sit at the bottom of your pool for four hours --

    或是在游泳池底連續坐四小時

  • so, "Honey, I'm in the pool," will take on a whole new meaning.

    當你說"親愛的,我現在在游泳池",可能表示了一種全新的意義

  • It will be interesting to see what we do in our Olympic trials.

    人們可以在奧運會的選拔賽做出什麼樣的表現呢,這將會變的很有趣

  • Presumably we'll ban them,

    可以預見地,這種人工紅血球會被禁止

  • but then we'll have the specter of teenagers in their high schools gyms

    但是,青少年怪傑將不斷地出現,他們在學校體育館中

  • routinely out-performing the Olympic athletes.

    就可以創下奧運紀錄

  • Freitas has a design for a robotic white blood cell.

    Freitas博士也設計了人造白血球

  • These are 2020-circa scenarios,

    以上是預計2020 年左右會發生的劇情

  • but they're not as futuristic as it may sound.

    雖然很像遙遠未來的故事,但事實並非如此

  • There are four major conferences on building blood cell-sized devices;

    已經有四場主要的會議在討論製造這類血球大小的裝置

  • there are many experiments in animals.

    也進行了許多動物試驗

  • There's actually one going into human trial,

    有一個已經進行人體試驗

  • so this is feasible technology.

    所以這種科技是非常可行的

  • If we come back to our exponential growth of computing,

    以計算能力的指數型成長來看

  • 1,000 dollars of computing is now somewhere between an insect and a mouse brain.

    現今1000 美元計算機的功能大約介於昆蟲或是老鼠的大腦

  • It will intersect human intelligence

    以儲存容量來看

  • in terms of capacity in the 2020s,

    大約2020 年左右會接近人類的智慧

  • but that'll be the hardware side of the equation.

    但這裡指的是硬體方面的比較

  • Where will we get the software?

    那麼相近於人腦的軟體該從哪裡取得呢?

  • Well, it turns out we can see inside the human brain,

    我們必須先來分析人腦的內部

  • and in fact not surprisingly,

    事實並不太令人意外

  • the spatial and temporal resolution of brain scanning is doubling every year.

    目前我們在腦部掃描的空間分辨力和瞬時分辨力每年都提升一倍

  • And with the new generation of scanning tools,

    有了新一代的掃瞄儀器

  • for the first time we can actually see

    第一次我們看到了

  • individual inter-neural fibers

    個別的神經間的纖維

  • and see them processing and signaling in real time --

    還即時地看到它們是如何的處理和傳送訊息

  • but then the question is, OK, we can get this data now,

    是的,我們現在已經可以取得資料了

  • but can we understand it?

    但是問題是我們能理解這些資料嗎?

  • Doug Hofstadter wonders, well, maybe our intelligence

    Doug Hofstadter 曾經懷疑:也許以人類的智慧

  • just isn't great enough to understand our intelligence,

    是無法去了解人類的智慧的

  • and if we were smarter, well, then our brains would be that much more complicated,

    因為當我們更聰明後,大腦的構造也會變得更複雜

  • and we'd never catch up to it.

    所以,我們永遠追不上大腦的進展

  • It turns out that we can understand it.

    但結果證明,我們已經能了解大腦了

  • This is a block diagram of

    這個方塊圖是個模型

  • a model and simulation of the human auditory cortex

    它在模擬人類大腦聽覺皮質上

  • that actually works quite well --

    有很好的表現

  • in applying psychoacoustic tests, gets very similar results to human auditory perception.

    在聽覺心理學測驗中,它和人類聽覺的結果非常類似

  • There's another simulation of the cerebellum --

    另外,也有個小腦的模擬圖

  • that's more than half the neurons in the brain --

    小腦涵蓋了人腦半數以上的神經元

  • again, works very similarly to human skill formation.

    它和人類在技能構成的運作非常類似

  • This is at an early stage, but you can show

    雖然現在是在發展的初期階段

  • with the exponential growth of the amount of information about the brain

    但在與大腦的相關的資訊量已經呈現指數成長

  • and the exponential improvement

    腦部掃描的分辨力上

  • in the resolution of brain scanning,

    也有指數型的改進

  • we will succeed in reverse-engineering the human brain

    在2020 年代以前

  • by the 2020s.

    人類大腦的逆向工程會有所成果

  • We've already had very good models and simulation of about 15 regions

    在腦部的數百個區域中,其中15個

  • out of the several hundred.

    已經有了非常好的模型和模擬

  • All of this is driving

    所有這些都會導向

  • exponentially growing economic progress.

    指數型的經濟成長

  • We've had productivity go from 30 dollars to 150 dollars per hour

    過去50 年,在勞工產值上已經從每位勞工每小時30 美金

  • of labor in the last 50 years.

    提升到150 美金

  • E-commerce has been growing exponentially. It's now a trillion dollars.

    電子商務也顯示指數型的成長。現在已經是上兆元的產業

  • You might wonder, well, wasn't there a boom and a bust?

    你也許會想問,它不是發生有過繁榮期跟泡沫化嗎?

  • That was strictly a capital-markets phenomena.

    這其實是資本市場的現象

  • Wall Street noticed that this was a revolutionary technology, which it was,

    當時華爾街察覺到這會是個革命性的科技,它確實是

  • but then six months later, when it hadn't revolutionized all business models,

    但是六個月後,它沒有讓所有的商業模式都產生革命性變革時

  • they figured, well, that was wrong,

    人們想,糟了

  • and then we had this bust.

    然後,泡沫化就發生了

  • All right, this is a technology

    好的。在這種科技裡

  • that we put together using some of the technologies we're involved in.

    融合運用了目前正在發展中的科技

  • This will be a routine feature in a cell phone.

    這會成為手機的標準功能

  • It would be able to translate from one language to another.

    它能將一種語言翻譯成另一種語言

  • So let me just end with a couple of scenarios.

    我將以一些遠景做為結尾

  • By 2010 computers will disappear.

    2010 年前,電腦即將消失

  • They'll be so small, they'll be embedded in our clothing, in our environment.

    它們變得非常微小,以致於它們被植入在衣服和環境當中

  • Images will be written directly to our retina,

    影像被直接寫在我們的視網膜上

  • providing full-immersion virtual reality,

    提供沉浸式的虛擬實境

  • augmented real reality. We'll be interacting with virtual personalities.

    真實感增加。我們也可以和虛擬人物互動

  • But if we go to 2029, we really have the full maturity of these trends,

    如果前往 2029 年,到那時,這些趨勢已臻成熟

  • and you have to appreciate how many turns of the screw

    你感念這些科技產生的過程,它們都曾歷經數次大轉折

  • in terms of generations of technology, which are getting faster and faster, we'll have at that point.

    而且愈變愈快的轉折終究才成功的

  • I mean, we will have two-to-the-25th-power

    性能比、容量和頻寬

  • greater price performance, capacity and bandwidth

    是現在的2 到25 倍

  • of these technologies, which is pretty phenomenal.

    這是相當驚人的成就

  • It'll be millions of times more powerful than it is today.

    它比目前的科技強大百萬倍

  • We'll have completed the reverse-engineering of the human brain,

    我們將完成人類大腦的逆向工程

  • 1,000 dollars of computing will be far more powerful

    就一般的容量來比

  • than the human brain in terms of basic raw capacity.

    一千美金的計算機將比人腦的功能更加強大

  • Computers will combine

    電腦會結合

  • the subtle pan-recognition powers

    人類智慧所擁有的細微的全辨識功能

  • of human intelligence with ways in which machines are already superior,

    加上機器原本就優於人腦-的項目

  • in terms of doing analytic thinking,

    例如:處理分析思考

  • remembering billions of facts accurately.

    與正確地記憶數十億的論據的方面

  • Machines can share their knowledge very quickly.

    機器更可以快速的分享知識

  • But it's not just an alien invasion of intelligent machines.

    智慧型機器不只像是外星人入侵

  • We are going to merge with our technology.

    還會和我們的科技結合

  • These nano-bots I mentioned

    我提及的這些奈米機器人

  • will first be used for medical and health applications:

    將首次被用在醫藥和健康的應用上。

  • cleaning up the environment, providing powerful fuel cells

    清理環境,提供能源-像是強大的燃料電池

  • and widely distributed decentralized solar panels and so on in the environment.

    和分佈很廣的分散式的太陽能板,等諸如此類的應用

  • But they'll also go inside our brain,

    它們也會走入我們的大腦中

  • interact with our biological neurons.

    和我們的生物神經元產生交互作用

  • We've demonstrated the key principles of being able to do this.

    我們已經證明了可以達成這個目標的關鍵性原理

  • So, for example,

    舉例來說

  • full-immersion virtual reality from within the nervous system,

    在與神經系統結合的沉浸式虛擬實境中

  • the nano-bots shut down the signals coming from your real senses,

    奈米機器人會及阻斷我們真實感受到的訊息

  • replace them with the signals that your brain would be receiving

    取而代之的是假定你在虛擬的環境下所該收到的訊息

  • if you were in the virtual environment,

    所該收到的訊息

  • and then it'll feel like you're in that virtual environment.

    大腦收到這樣的訊息,所以它感覺你是真實地存在虛擬世界裡

  • You can go there with other people, have any kind of experience

    你可以和他人一同前往虛擬世界,所有這些感官產生的經驗

  • with anyone involving all of the senses.

    都可以和他人共享

  • "Experience beamers," I call them, will put their whole flow of sensory experiences

    我稱它為”經驗傳送器”`。情感對應的神經所產生的感官經驗

  • in the neurological correlates of their emotions out on the Internet.

    會被放在網際網路上

  • You can plug in and experience what it's like to be someone else.

    只要連上它們,就能體驗另一個人的感覺

  • But most importantly,

    但最重要的是

  • it'll be a tremendous expansion

    透過這種和科技的直接合併

  • of human intelligence through this direct merger with our technology,

    人類的智慧會急遽地擴展

  • which in some sense we're doing already.

    就某些層面而言,我們已經在進行了

  • We routinely do intellectual feats

    有了科技的協助

  • that would be impossible without our technology.

    人類才能不時地展現出智慧的成就

  • Human life expectancy is expanding. It was 37 in 1800,

    人類的預期壽命不斷地延長,在 1800 年時是37歲

  • and with this sort of biotechnology, nano-technology revolutions,

    隨著這類的生化科技與奈米科技革命的發展

  • this will move up very rapidly

    預期壽命會在未來幾年

  • in the years ahead.

    快速的增長

  • My main message is that progress in technology

    我要傳達的重點是科技的進步

  • is exponential, not linear.

    是指數型的,不是線型的

  • Many -- even scientists -- assume a linear model,

    很多人,甚至是科學家,常以線型模型來預期未來的發展

  • so they'll say, "Oh, it'll be hundreds of years

    所以,他們才會認為 “要花上數百年

  • before we have self-replicating nano-technology assembly

    我們才能發展出具備自我複製能力的奈米科技組裝

  • or artificial intelligence."

    或是人工智慧”

  • If you really look at the power of exponential growth,

    但如果你看到指數型成長的力量

  • you'll see that these things are pretty soon at hand.

    你會預期這些事將在不久後實現

  • And information technology is increasingly encompassing

    資訊科技會持續地擴展到

  • all of our lives, from our music to our manufacturing

    生活的各個層面,從音樂到生產製造

  • to our biology to our energy to materials.

    生物、能源以及材料

  • We'll be able to manufacture almost anything we need in the 2020s,

    在 2020 年代

  • from information, in very inexpensive raw materials,

    有了資訊科技,再加上便宜的原料

  • using nano-technology.

    以及奈米科技,我們幾乎能製造出所有的產品

  • These are very powerful technologies.

    這些有影響力的科技

  • They both empower our promise and our peril.

    不僅能帶來美好未來,也可能導致悲慘命運

  • So we have to have the will to apply them to the right problems.

    所以,我們必須有決心,確保它們只能用在正確的方向上

  • Thank you very much.

    非常感謝

  • (Applause)

    (掌聲)

Well, it's great to be here.

很高興能來到這裡。我們聽過一些

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 TED 科技 演化 電晶體 指數 成長

TED】雷-庫茲韋爾:科技的加速力量(The accelerating power of technology | Ray Kurzweil)。 (【TED】Ray Kurzweil: The accelerating power of technology (The accelerating power of technology | Ray Kurzweil))

  • 1222 62
    Max Lin 發佈於 2021 年 01 月 14 日
影片單字