字幕列表 影片播放 列印英文字幕 There’s lots of physics going on in raindrops: cohesion, adhesion, air resistance – I 雨滴裡有許多物理學問:內聚力、附著力、空氣阻力 mean, falling raindrops often look more like jellyfish than teardrops – but perhaps most 我的意思是:掉落的雨滴通常看起來更像水母而非眼淚,但也許最 fascinating is the physics that makes raindrops impossible. 迷人之處在於無法製造雨滴的物理學 You might think making a raindrop is easy – just cool water vapor in the air past 你可能會想說製造雨滴很簡單,就是冷卻空氣中的水蒸氣,過了 its condensation point, and it condenses into liquid droplets, right? But there’s a big 它的凝結點,然後它就會凝結成液體水珠,對吧!但那有一個大 problem standing, almost literally, in the way: the surface of the droplets themselves. 問題,那就是水滴自身的表面 Liquids hate surfaces – the liquid is bound by the laws of intermolecular attraction to pull 液體討厭表面,他們利用分子間吸引力來拉近彼此以 together in an attempt to minimize the size of their surfaces. That’s why small water 試著減少它們的表面積,那就是為什麼小水珠 droplets are spherical, why you can put a huge amount of water on a penny, and why bubbles 是球形,為什麼你可以放很多水在一個一分錢上,還有為什麼泡泡 form the crazy shapes they do. 可以形成瘋狂的形狀 The technical way of saying this is that surfaces require more free energy to make than volumes. 以專業的說法來說,這是因為表面比體積需要更多的自由能來形成 For example, when you’re condensing water in saturated air from a gas to a liquid, every 例如:當你正凝結飽和空氣中的水,使其從氣態轉換到液態時,每 cubic centimeter VOLUME of water you make releases energy just from its change of volume 製造立方公分體積的水都會從它體積及壓力的改變來釋放能量 and pressure – roughly enough to lift an apple a meter into the air. But to make each 這大概足以舉一顆蘋果上升一公尺高,但要製造每一 square centimeter of the SURFACE of that water requires an INPUT of energy – not much, 平方公分表面積的水需要吸收一些能量,這不多 but it's equivalent to lifting a fortune cookie fortune 1 centimeter. 但足以舉起一個幸運餅乾一公分高 For large amounts of water, the energy you get from the volume, which is proportional 對大量的水而言,從體積獲得的能量正比於 to the radius cubed, is more than enough to make up for the energy cost due to the surface 半徑三次方,這超過補充表面積能量損失 area, which is proportional to the radius squared. Cubing tends to make things bigger 的二次方,立方往往大於 than squaring. BUT for really small radii, the opposite is true – cubing a small number 平方,但對於非常小的半徑而言卻是相反的,將一個極小的數立方 makes it smaller than squaring it. This unavoidable mathematical truth means that if a water droplet 會使它小於平方的值,這個數學結果表示如果一個水珠 is below a certain size, then making it bigger requires more surface area energy than is 小於特定的尺寸時,那麼使其變大會需要更多的表面積能量,而這大於 released from volume energy, meaning it TAKES energy for the droplet to grow, so it doesn’t 從體積所釋放的能量,這表示水珠花更多能量來變大,所以它 – it shrinks. For pure cubic and quadratic functions, this equivalence point happens 會變小,對於純三次方和四次方的方程式而言,這個解發生 at 2/3 – that’s when x^3 starts growing faster than x^2, but for water droplets it’s 在三分之二的時候,那正是x的三次方增加速度開始超越x的二次方的時候,但對於水滴,它 somewhere around a few million molecules; way too many to randomly clump together in 周圍有百萬個分子;有太多途徑以至於不能隨機聚集在一起,在 less than the age of the universe! And thus, raindrops are impossible for the precise mathematical 小於宇宙的年齡中!因此,雨滴不可能符合準確數學中 fact that x squared grows faster than x cubed – for small numbers. 小數字的x平方會比x立方增加快速 Ok, so obviously raindrops exist, but if you want to know HOW they sidestep this battle 所以雨滴很明顯存在,但如果你想知道他們怎麼回避掉這場 between quadratics and cubics, you’ll have to go watch MinuteEarth’s video about how 二次方與三次方的戰爭,那你就要去看地球一分鐘關於 raindrops form. 雨滴如何形成的影片
B2 中高級 美國腔 雨滴 次方 體積 表面積 能量 製造 為什麼製造雨滴是不可能的 (Why Raindrops Are Mathematically Impossible) 6159 424 bsofade 發佈於 2016 年 07 月 14 日 更多分享 分享 收藏 回報 影片單字