Placeholder Image

字幕列表 影片播放

  • The Heisenberg Uncertainty Principle is one of a handful of ideas

    海森堡測不準原理,或"不確定性原理" 是少數可以從量子物理領域

  • from quantum physics to expand into general pop culture.

    拓展到普羅大眾文化的物理原理之一

  • It says that you can never simultaneously know the exact position

    它指出我們無法既確定一個物體的位置

  • and the exact speed of an object and shows up as a metaphor in everything

    又同時精準測得這它的速率。 這在許多領域被當成隱喻使用

  • from literary criticism to sports commentary.

    從藝文評論到體育播報領域都有

  • Uncertainty is often explained as a result of measurement,

    測不準原理常常被認為源自於測量行為

  • that the act of measuring an object's position changes its speed, or vice versa.

    測量物體位置的動作 同時會改變其速度,反之亦然

  • The real origin is much deeper and more amazing.

    但是真正的原理更加深奧 也更加驚奇有趣

  • The Uncertainty Principle exists because everything in the universe

    之所以會有測不準原理 是因為宇宙中的任何東西

  • behaves like both a particle and a wave at the same time.

    都同時兼具「粒子」和「波」的兩種性質

  • In quantum mechanics, the exact position and exact speed of an object

    在量子力學中,一個物體的 確切位置和速度是沒有意義的

  • have no meaning.

    為了理解它

  • To understand this,

    我們需要釐清一下: 表現得像「粒子」或像「波」的含意

  • we need to think about what it means to behave like a particle or a wave.

    粒子可在某一時間存在於特定位置

  • Particles, by definition, exist in a single place at any instant in time.

    我們能利用在特定位置 發現此物體的機率圖形

  • We can represent this by a graph showing the probability of finding

    來呈現這個定義 圖形上會有一個高峰值

  • the object at a particular place, which looks like a spike,

    物體在某個特定位置 出現的機率是 100%,在他處則都是 0%

  • 100% at one specific position, and zero everywhere else.

    而波則是「擾動」在空間中傳播的現象

  • Waves, on the other hand, are disturbances spread out in space,

    就像是湖面上的漣漪

  • like ripples covering the surface of a pond.

    我們可將「波」視為整體 然後確認其性質

  • We can clearly identify features of the wave pattern as a whole,

    其中最重要的就是波長

  • most importantly, its wavelength,

    波長是相鄰兩個波峰或波谷之間的距離

  • which is the distance between two neighboring peaks,

    但是我們無法確認波的位置

  • or two neighboring valleys.

    波在各種不同的位置出現的機率都很大

  • But we can't assign it a single position.

    波長在量子物理學不可或缺的

  • It has a good probability of being in lots of different places.

    因為物體的(物質波)波長與其動量有關

  • Wavelength is essential for quantum physics

    動量 = 質量 Χ 速度

  • because an object's wavelength is related to its momentum,

    一個快速運動的物體具有很大的動量

  • mass times velocity.

    伴隨著波長很短的物質波

  • A fast-moving object has lots of momentum,

    很重的物體即使動得不快 仍具有很大的動量

  • which corresponds to a very short wavelength.

    同樣的,也代表了它的波長很短

  • A heavy object has lots of momentum even if it's not moving very fast,

    這就是我們無法察覺 日常物體波動性質的原因

  • which again means a very short wavelength.

    如果你丟出一個棒球

  • This is why we don't notice the wave nature of everyday objects.

    它的波長是1公尺的10的33次方之一

  • If you toss a baseball up in the air,

    因為實在是太小了,所以不可能被測到

  • its wavelength is a billionth of a trillionth of a trillionth of a meter,

    但微小的物體,例如原子或電子束

  • far too tiny to ever detect.

    波長就大到足以用物理實驗量測出來

  • Small things, like atoms or electrons though,

    如果我們有一個純粹的波 就可以測量它的波長

  • can have wavelengths big enough to measure in physics experiments.

    進而算出它的動量 但是卻無法測出它的確實位置

  • So, if we have a pure wave, we can measure its wavelength,

    另一方面,我們很容易確知粒子的位置

  • and thus its momentum, but it has no position.

    但它卻並沒有波長 所以我們不知道它的動量大小

  • We can know a particles position very well,

    為了同時得到 一個粒子的位置與動量

  • but it doesn't have a wavelength, so we don't know its momentum.

    我們需要融合兩種圖像

  • To get a particle with both position and momentum,

    創造一個侷限 在很小區域的波圖像

  • we need to mix the two pictures

    那該如何進行呢?

  • to make a graph that has waves, but only in a small area.

    方法是:藉由疊加數個不同波長的的波

  • How can we do this?

    因為一個波一種動量 這代表賦予物體具備不同動量的可能性

  • By combining waves with different wavelengths,

    當我們將兩個波疊加起來時

  • which means giving our quantum object some possibility of having different momenta.

    波峰對齊的地方會形成更高的波峰

  • When we add two waves, we find that there are places

    在另外一些位置 因波峰與波谷對齊而相互抵銷

  • where the peaks line up, making a bigger wave,

    結果就是有些地方我們看得到波

  • and other places where the peaks of one fill in the valleys of the other.

    另一些地方,則什麼都沒有

  • The result has regions where we see waves

    如果我們再加上第三個波

  • separated by regions of nothing at all.

    那些波被抵銷的區域變大了

  • If we add a third wave,

    加上第四個,持續變大 而有波的區域逐漸變窄

  • the regions where the waves cancel out get bigger,

    如果我們持續疊加更多的波 就能得到一個波包

  • a fourth and they get bigger still, with the wavier regions becoming narrower.

    在一個很小的區域內有一個確定的波長

  • If we keep adding waves, we can make a wave packet

    這就得到了一個 同時擁有波與粒子屬性的物體

  • with a clear wavelength in one small region.

    但是這樣一來 位置和動量都無法準確測得

  • That's a quantum object with both wave and particle nature,

    物體並非侷限在一個單一位置上

  • but to accomplish this, we had to lose certainty

    在波包內的範圍裡 我們發現物體的機率都很高

  • about both position and momentum.

    我們透過疊加多個波得到波包

  • The positions isn't restricted to a single point.

    意味著我們就有可能找到 與其中一個物體相對應的動量

  • There's a good probability of finding it within some range

    導致位置與動量都無法精確測量

  • of the center of the wave packet,

    這都與測不準原理有關

  • and we made the wave packet by adding lots of waves,

    如果你想更精確的測量位置

  • which means there's some probability of finding it

    就得用更多的波疊加起來, 加以建造出更小的波包

  • with the momentum corresponding to any one of those.

    波數增加使動量更不確定

  • Both position and momentum are now uncertain,

    如果你想更明確的得到動量值 就需要一個更大的波包

  • and the uncertainties are connected.

    結果位置就更不確定

  • If you want to reduce the position uncertainty

    這就是海森堡測不準原理

  • by making a smaller wave packet, you need to add more waves,

    最初由德國物理學家 Werner Heisenberg 於1927 年提出

  • which means a bigger momentum uncertainty.

    這種測不準的特性與測量的精確度無關

  • If you want to know the momentum better, you need a bigger wave packet,

    是結合波和粒子 兩種性質之後不可避免的結果

  • which means a bigger position uncertainty.

    測不準原理不僅僅 是測量上的實際限制

  • That's the Heisenberg Uncertainty Principle,

    它是物體只能表現出 一種(波或粒子)性質的限制

  • first stated by German physicist Werner Heisenberg back in 1927.

    已被建入宇宙基本構造之中

  • This uncertainty isn't a matter of measuring well or badly,

  • but an inevitable result of combining particle and wave nature.

  • The Uncertainty Principle isn't just a practical limit on measurment.

  • It's a limit on what properties an object can have,

  • built into the fundamental structure of the universe itself.

The Heisenberg Uncertainty Principle is one of a handful of ideas

海森堡測不準原理,或"不確定性原理" 是少數可以從量子物理領域

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋