Placeholder Image

字幕列表 影片播放

  • You and a fellow castaway are stranded on a desert island

    你和你的同伴流落荒島

  • playing dice for the last banana.

    玩骰子決定誰拿走最後一根香蕉

  • You've agreed on these rules:

    你們都同意這些規則

  • You'll roll two dice,

    你們將擲兩個骰子

  • and if the biggest number is one, two, three or four,

    如果最大的數字是 1到4

  • player one wins.

    第一名玩家獲勝

  • If the biggest number is five or six, player two wins.

    如果最大的數定提5 或6 第二名玩家獲勝

  • Let's try twice more.

    咱們多試兩次

  • Here, player one wins,

    這裡,第一名玩家獲勝

  • and here it's player two.

    而這裡,則是第二名玩家獲勝

  • So who do you want to be?

    那你想當哪一個玩家呢?

  • At first glance, it may seem like player one has the advantage

    第一印象, 似乎是第一名玩家佔優勢

  • since she'll win if any one of four numbers is the highest,

    因為如果四個數字的任一個為最大,她將獲勝

  • but actually,

    但,事實上

  • player two has an approximately 56% chance of winning each match.

    第二名玩家有56%的機率會獲勝

  • One way to see that is to list all the possible combinations you could get

    用一種方法,來看看你所能得到的所有組合

  • by rolling two dice,

    從擲兩個骰子的活動中

  • and then count up the ones that each player wins.

    然後計算每個玩家獲勝的次數

  • These are the possibilities for the yellow die.

    這些是黃骰子可能的結果

  • These are the possibilities for the blue die.

    這些是藍骰子可能的結果

  • Each cell in the chart shows a possible combination when you roll both dice.

    表中的每個格子 代表擲兩個骰子的可能組合

  • If you roll a four and then a five,

    若你擲出一個4 和一個5

  • we'll mark a player two victory in this cell.

    我們就註記第二名玩家 在這格獲勝

  • A three and a one gives player one a victory here.

    一個3 和一個1 代表第一名玩家獲勝

  • There are 36 possible combinations,

    總共有36種組合

  • each with exactly the same chance of happening.

    每一種發生的機率都一樣

  • Mathematicians call these equiprobable events.

    在數學中稱為 相等機率事件

  • Now we can see why the first glance was wrong.

    現在我們可以看到 為何第一印象是錯的

  • Even though player one has four winning numbers,

    即使第一名玩家有4個獲勝數字

  • and player two only has two,

    而第二名玩家只有2個獲勝數字

  • the chance of each number being the greatest is not the same.

    每個數字成為最大值的機率都一樣

  • There is only a one in 36 chance that one will be the highest number.

    在36種組合中 只有一種組合的最大值是1

  • But there's an 11 in 36 chance that six will be the highest.

    但在36種組合中 有11種組合的最大值是6

  • So if any of these combinations are rolled,

    所以,若擲出這些組合的任一種

  • player one will win.

    第一名玩家獲勝

  • And if any of these combinations are rolled,

    若擲出這些組合的任一種

  • player two will win.

    第二名玩家獲勝

  • Out of the 36 possible combinations,

    在36種可能的組合中

  • 16 give the victory to player one, and 20 give player two the win.

    16種由第一名玩家獲勝 20種由第二名玩家獲勝

  • You could think about it this way, too.

    你也可以用這個方法思考

  • The only way player one can win

    第一名玩家僅會在這樣的時候獲勝

  • is if both dice show a one, two, three or four.

    當兩個骰子都擲出1到4

  • A five or six would mean a win for player two.

    任一個5 或 6 代表第二名玩家獲勝

  • The chance of one die showing one, two, three or four is four out of six.

    一個骰子出現1到4的機率是 六分之四 (4/6)

  • The result of each die roll is independent from the other.

    個別骰子都是獨立事件

  • And you can calculate the joint probability of independent events

    你可以計算這些獨立事件的聯合機率

  • by multiplying their probabilities.

    經由 他們的機率的相乘

  • So the chance of getting a one, two, three or four on both dice

    所以 兩個骰子都擲出 1,2,3,或4的機率是

  • is 4/6 times 4/6, or 16/36.

    六分之四 乘以 六分之四 (4/6 * 4/6)

  • Because someone has to win,

    因為總有人要獲勝

  • the chance of player two winning is 36/36 minus 16/36,

    第二名玩家獲勝的機率是 三十六分之三十六 減去 三十六分之十六 (36/36 - 16/36)

  • or 20/36.

    即 三十六分之二十 (20/36)

  • Those are the exact same probabilities we got by making our table.

    這跟表格算出來的機率正好相同

  • But this doesn't mean that player two will win,

    但這不代表第二名玩家會贏

  • or even that if you played 36 games as player two, you'd win 20 of them.

    也不代表第二名玩家在36次比賽中會贏20次

  • That's why events like dice rolling are called random.

    這就是為何擲骰子被稱為 隨機事件

  • Even though you can calculate the theoretical probability

    即使你可以算出理論上的機率值

  • of each outcome,

    每個結果的機率值

  • you might not get the expected results if you examine just a few events.

    你可能得不到預期的結果 如果你只試驗了幾次的話

  • But if you repeat those random events many, many, many times,

    但你若重複隨機事件 很多、更多、超多次的話

  • the frequency of a specific outcome, like a player two win,

    特定結果出現的頻率 例如第二名玩家獲勝

  • will approach its theoretical probability,

    將會接近理論上的機率值

  • that value we got by writing down all the possibilities

    那就是我們列出所有可能組合

  • and counting up the ones for each outcome.

    再把各種結果的機率值加總所得到的值

  • So, if you sat on that desert island playing dice forever,

    所以,如果你在荒島上 持續不斷的擲骰子

  • player two would eventually win 56% of the games,

    第二名玩家會贏得百分之五十六 (56%) 的比賽

  • and player one would win 44%.

    而第一名玩家會贏得百分之四十四 (44%) 的比賽

  • But by then, of course, the banana would be long gone.

    但屆時,當然,香蕉早就消失了

You and a fellow castaway are stranded on a desert island

你和你的同伴流落荒島

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋