Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • Machine learning is creating tremendous economic value today.

    如今,機器學習正在創造巨大的經濟價值。

  • I think 99 percent of the economic value created by machine learning today is through one type of machine learning, which is called supervised learning.

    我認為,目前機器學習所創造的經濟價值中,有 99% 是通過一種叫做監督學習的機器學習實現的。

  • Let's take a look at what that means.

    讓我們來看看這意味著什麼。

  • Supervised machine learning, or more commonly supervised learning, refers to algorithms that learn X to Y or input to output mappings.

    監督機器學習,或更常見的監督學習,是指學習 X 到 Y 或輸入到輸出映射的算法。

  • The key characteristic of supervised learning is that you give your learning algorithm examples to learn from that include the right answers, where by right answer I mean the correct label Y for a given input X.

    監督式學習的主要特點是,你要給學習算法提供包含正確答案的學習示例,這裡的正確答案是指給定輸入 X 的正確標籤 Y。

  • And it's by seeing correct pairs of input X and desired output label Y that the learning algorithm eventually learns to take just the input alone without the output label and gives a reasonably accurate prediction or guess of the output.

    正是通過觀察輸入 X 和所需輸出標籤 Y 的正確配對,學習算法最終學會了只接收輸入而不接收輸出標籤,並對輸出做出合理準確的預測或猜測。

  • Let's look at some examples.

    讓我們來看幾個例子。

  • If the input X is an email and the output Y is this email spam or not spam, this gives you your spam filter.

    如果輸入 X 是一封電子郵件,輸出 Y 是這封電子郵件是垃圾郵件或不是垃圾郵件,這就是垃圾郵件過濾器。

  • Or if the input is an audio clip and the algorithm's job is to output the text transcript.

    或者,如果輸入的是音頻片段,而算法的任務是輸出文本轉錄。

  • Then this is speech recognition.

    這就是語音識別。

  • Or if you want to input English and have it output the corresponding Spanish, Arabic, Hindi, Chinese, Japanese, or something else translation, then that's machine translation.

    或者,如果您想輸入英語,然後讓它輸出相應的西班牙語、阿拉伯語、印地語、中文、日語或其他翻譯,這就是機器翻譯。

  • Or the most lucrative form of supervised learning today is probably used in online advertising.

    或者說,當今最賺錢的監督學習形式可能是用於網絡廣告。

  • Nearly all the large online ad platforms have a learning algorithm that inputs some information about an ad and some information about you and then tries to figure out if you will click on that ad or not.

    幾乎所有大型在線廣告平臺都有一種學習算法,它輸入廣告的一些資訊和你的一些資訊,然後試著判斷你是否會點擊該廣告。

  • Because by showing you ads that you're slightly more likely to click on, for these large online ad platforms, every click is revenue.

    因為對於這些大型在線廣告平臺來說,通過向你展示你更有可能點擊的廣告,每一次點擊都是收入。

  • This actually drives a lot of revenue for these companies.

    這實際上為這些公司帶來了大量收入。

  • This is something that one's done a lot of work on.

    我們在這方面做了大量工作。

  • Maybe not the most inspiring application, but it certainly has a significant economic impact in some companies today.

    也許這不是最鼓舞人心的應用,但它肯定會對當今一些公司的經濟產生重大影響。

  • Or if you want to build a self-driving car, the learning algorithm would take as input an image and some information from other sensors, such as a radar or other things, and then try to output the position of, say, other cars so that your self-driving car can safely drive around the other cars.

    或者,如果你想製造一輛自動駕駛汽車,學習算法會將影像和其他傳感器(如雷達或其他設備)的一些資訊作為輸入,然後嘗試輸出其他汽車的位置,這樣你的自動駕駛汽車就能安全地繞過其他汽車。

  • Or take manufacturing.

    或者以製造業為例。

  • I've actually done a lot of work in this sector at Landing AI.

    實際上,我在蘭亭人工智能公司做了很多這方面的工作。

  • You can have a learning algorithm take as input a picture of a manufactured product, say a cell phone that just rolled off the production line, and have the learning algorithm output whether or not there is a scratch, dent, or other defect in the product.

    你可以讓學習算法輸入一張製成品的照片,比如剛下線的手機,然後讓學習算法輸出產品是否有劃痕、凹痕或其他缺陷。

  • This is called visual inspection and is helping manufacturers reduce or prevent defects in their products.

    這就是所謂的目視檢測,可幫助製造商減少或防止產品缺陷。

  • In all of these applications, you would first train your model with examples of inputs X and the right answers, that is, the labels Y.

    在所有這些應用中,首先要使用輸入 X 和正確答案(即標籤 Y)的示例來訓練模型。

  • After the model has learned from these input-output or X and Y pairs, it can then take a brand new input X, something it's never seen before, and try to produce the appropriate corresponding output Y.

    在模型從這些輸入-輸出或 X 和 Y 對中學習之後,它就可以接受一個全新的輸入 X(它以前從未見過的東西),並嘗試產生相應的輸出 Y。

  • Let's dive more deeply into one specific example.

    讓我們更深入地瞭解一個具體的例子。

  • Say you want to predict housing prices based on the size of a house.

    假設您想根據房屋面積預測房價。

  • You've collected some data, and say you plot the data, and it looks like this.

    您收集了一些數據,假設您繪製了數據圖,它看起來是這樣的。

  • Here on the horizontal axis is the size of the house in square feet.

    這裡的橫軸是房屋的面積,組織、部門是平方英尺。

  • And yes, I live in the United States where we still use square feet.

    是的,我生活在美國,我們仍然使用平方英尺。

  • I know most of the world uses square meters.

    我知道世界上大多數國家使用平方米。

  • And here on the vertical axis is the price of the house in, say, thousands of dollars.

    這裡的縱軸是房子的價格,比如說,以千美元為組織、部門。

  • So with this data, let's say a friend wants to know what's the price for their 750 square foot house.

    有了這些數據,假設一位朋友想知道自己 750 平方英尺房子的價格是多少。

  • How can a learning algorithm help you?

    學習算法如何幫助您?

  • One thing a learning algorithm might be able to do is, say, fit a straight line to the data.

    學習算法能做的一件事是,比如說,根據數據擬合一條直線。

  • And reading off the straight line, it looks like your friend's house could be sold for maybe about, I don't know, $150,000.

    從直線上看,你朋友的房子可以賣到 15 萬美元左右。

  • But fitting a straight line isn't the only learning algorithm you can use.

    但是,擬合直線並不是唯一的學習算法。

  • There are others that could work better for this application.

    還有其他更適合這種應用的方法。

  • For example, rather than fitting a straight line, you might decide that it's better to fit a curve, a function that's slightly more complicated or more complex than a straight line.

    例如,與其擬合一條直線,不如擬合一條曲線,一條比直線稍複雜或更復雜的函數。

  • If you do that and make a prediction here, then it looks like, well, your friend's house could be sold for closer to $200,000.

    如果你這樣做,並在這裡進行預測,那麼看起來,你朋友的房子可能會以接近 20 萬美元的價格出售。

  • One of the things you see later in this class is how you can decide whether to fit a straight line, a curve, or another function that is even more complex to the data.

    在本課後面的內容中,你會看到如何決定是擬合直線、曲線,還是其他更復雜的函數。

  • Now, it doesn't seem appropriate to pick the one that gives your friend the best price.

    現在看來,選一個給你朋友最優惠價格的似乎並不合適。

  • But one thing you see is how to get an algorithm to systematically choose the most appropriate line or curve or other thing to fit to this data.

    但你會看到的一點是,如何讓算法系統地選擇最合適的直線、曲線或其他東西來擬合這些數據。

  • What you've seen in this slide is an example of supervised learning.

    你在這張幻燈片中看到的就是監督學習的一個例子。

  • Because we gave the algorithm a data set in which the so-called right answer, that is, the label or the correct price y, is given for every house on the plot.

    因為我們給了算法一個數據集,在這個數據集中,地塊上的每棟房子都有所謂的正確答案,即標籤或正確的價格 y。

  • And the task of the learning algorithm is to produce more of these right answers, specifically predicting what is the likely price for other houses like your friend's house.

    而學習算法的任務就是產生更多這樣的正確答案,特別是預測像你朋友家這樣的其他房子的可能價格。

  • That's why this is supervised learning.

    這就是有監督學習的原因。

  • To define a little bit more terminology, this housing price prediction is a particular type of supervised learning called regression.

    再定義一下術語,這種房價預測是一種特殊的監督學習,稱為迴歸。

  • And by regression, I mean we're trying to predict a number from infinitely many possible numbers, such as the house prices in our example, which could be 150,000 or 70,000 or 183,000 or any other number in between.

    我所說的迴歸,是指我們試圖從無限多的可能數字中預測一個數字,比如我們例子中的房價,可能是 150,000 或 70,000 或 183,000 或介於兩者之間的任何其他數字。

  • So that's supervised learning, learning input-output or x-to-y mappings.

    這就是監督學習,學習輸入-輸出或 X-Y 映射。

  • And you saw in this video an example of regression, where the task is to predict a number.

    你在這段視頻中看到了一個迴歸的例子,任務是預測一個數字。

  • But there's also a second major type of supervised learning problem called classification.

    但還有第二類主要的監督學習問題,即分類問題。

  • Let's take a look at what that means in the next video.

    讓我們在下一段視頻中看看這意味著什麼。

Machine learning is creating tremendous economic value today.

如今,機器學習正在創造巨大的經濟價值。

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋