By introducing deep logic gate tree convolutions, or pooling, and residual initializations, The authors scaled these networks, achieving 86.29% accuracy on CIFAR-10 using just 61 million logic gates, being 29 times smaller than competing methods.
通過引入深度邏輯門樹卷積(或池化)和殘差初始化,作者擴大了這些網絡的規模,僅用 6100 萬個邏輯門就在 CIFAR-10 上實現了 86.29% 的準確率,是其他競爭方法的 29 倍。