Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • In this video, we're going to talk about Planck's constant and blackbody radiation.

    在本視頻中,我們將討論普朗克常數和黑體輻射。

  • Now you might be wondering, what is blackbody radiation?

    現在你可能想知道,什麼是黑體輻射?

  • Well, any object with a temperature above 0 Kelvin is going to emit some form of electromagnetic radiation.

    任何溫度高於 0 開爾文的物體都會發出某種形式的電磁輻射。

  • As the temperature increases, the energy of that radiation will increase as well.

    隨著溫度的升高,輻射的能量也會增加。

  • So imagine if you have a metal, and you heat the metal.

    是以,想象一下,如果你有一塊金屬,然後加熱這塊金屬。

  • As the temperature of the metal goes up, eventually, you'll notice that the metal will have a reddish glow to it.

    隨著金屬溫度的升高,最終你會發現金屬會發出紅光。

  • And as you continue to heat up the metal, as the temperature increases, it's going to appear yellow, and then maybe even whitish.

    當你繼續加熱金屬時,隨著溫度的升高,金屬會呈現黃色,然後甚至會泛白。

  • Whenever you increase the temperature of an object, the molecules in that object will vibrate with more energy.

    只要物體的溫度升高,物體中的分子就會以更大的能量振動。

  • And the oscillations of the electric charges in those molecules can emit electromagnetic radiation.

    而這些分子中電荷的振盪會發出電磁輻射。

  • So let's say you have an atom.

    假設你有一個原子。

  • Let's say this is a hydrogen atom.

    假設這是一個氫原子。

  • This is the first energy level.

    這是第一能級。

  • The second energy level.

    第二能級。

  • Let's say this is the third energy level.

    假設這是第三能級。

  • When an electron in this atom, when it absorbs energy, it can jump to a higher energy level.

    當原子中的電子吸收能量時,它可以躍遷到更高的能級。

  • Now, when that electron returns to its original state, or if it drops to a lower energy level, it's going to emit electromagnetic energy.

    現在,當電子恢復到原來的狀態,或者下降到一個較低的能級時,它就會發射電磁能。

  • And so as these electrons, as they oscillate back and forth, they can absorb and emit electromagnetic energy.

    是以,當這些電子來回擺動時,它們可以吸收和發射電磁能。

  • Now, the energy that is carried by a photon is a multiple of this value, hf.

    現在,光子攜帶的能量是這個值 hf 的倍數。

  • So we're going to put an n, where n is an integer, h is the Planck's constant, f is frequency.

    是以,我們要輸入一個 n,其中 n 是整數,h 是普朗克常數,f 是頻率。

  • The frequency is measured in hertz, or s to the minus 1, and h is Planck's constant, which is 6.626 times 10 to the negative 34 joules times seconds.

    頻率的組織、部門是赫茲(或負 1 的 s),h 是普朗克常數,即 10 的 6.626 次方(負 34 焦耳乘以秒)。

  • Now, this equation tells us something very important, and that is that the energy of a photon is quantized.

    現在,這個等式告訴我們一件非常重要的事情,那就是光子的能量是量化的。

  • It's not continuous, it can only have discrete values.

    它不是連續的,只能有離散值。

  • So it can't be just any value, but it's a multiple of hf.

    是以,它不能是任何值,而是 hf 的倍數。

  • It can be 1hf, it can be 2hf, 3hf, but nothing in between that.

    可以是 1hf,也可以是 2hf、3hf,但沒有介於兩者之間的。

  • So the energy of a photon can only exist in discrete values, it can't take any value.

    是以,光子的能量只能以離散值存在,不能取任何值。

  • So thus we could say that energy is quantized.

    是以,我們可以說能量是量子化的。

  • Now let's work on some problems.

    現在我們來解決一些問題。

  • Calculate the energy of a photon with a frequency of 4 times 10 to the 14 hertz.

    計算頻率為 10 的 4 次方到 14 赫茲的光子的能量。

  • So we could use this formula to get the answer.

    是以,我們可以用這個公式得出答案。

  • So we're only dealing with a single photon, so n is going to be 1.

    是以,我們只處理一個光子,所以 n 將是 1。

  • Planck's constant, that's 6.626 times 10 to the negative 34, and this is joules times seconds.

    普朗克常數,即 10 的 6.626 次方到負 34,這是焦耳乘以秒。

  • The frequency is 4 times 10 to the 14 hertz.

    頻率是 10 的 4 倍,即 14 赫茲。

  • And hertz is seconds to the minus 1, or 1 over seconds.

    赫茲是秒到負 1,或 1 超過秒。

  • And so we can see the unit, seconds, will cancel.

    是以,我們可以看到組織、部門 "秒 "將被取消。

  • And this is going to leave behind the unit joules.

    這樣就會留下焦耳這個組織、部門。

  • And so the energy is going to be 2.65 times 10 to the negative 19 joules.

    是以,能量將是 10 的 2.65 倍,即負 19 焦耳。

  • So that's the energy of this particular photon.

    這就是這個特定光子的能量。

  • Now what is the energy of a red photon with a wavelength of 700 nanometers?

    波長為 700 納米的紅色光子的能量是多少?

  • Whenever light has a wavelength of about 700 nanometers, it's going to appear red.

    只要光的波長在 700 納米左右,就會呈現紅色。

  • Now, in order to do this one, we need an additional formula.

    現在,為了做到這一點,我們需要一個額外的公式。

  • The wavelength of light times frequency is equal to the speed of light.

    光的波長乘以頻率等於光速。

  • So what we need to do first is we need to calculate the frequency.

    是以,我們首先需要計算頻率。

  • The frequency is the speed of light divided by the wavelength.

    頻率是光速除以波長。

  • And the speed of light, which is the same for all types of electromagnetic radiation in a vacuum, is 3 times 10 to the 8 meters per second.

    而在真空中,所有類型的電磁輻射的光速都是一樣的,是每秒 8 米的 10 的 3 倍。

  • The wavelength is 700 nanometers, and a nanometer is 10 to the minus 9 meters.

    波長為 700 納米,一納米等於 10 到負 9 米。

  • So the unit meters will cancel.

    是以,組織、部門儀表將被取消。

  • Giving us the unit 1 over seconds, which is frequency in hertz.

    這樣我們就得到了組織、部門 "1 比秒",也就是頻率(赫茲)。

  • So 3 times 10 to the 8 divided by 700 times 10 to the negative 9.

    是以,10 的 3 次方除以 10 的 700 次方得負 9。

  • That's going to give us a frequency of 4.286 times 10 to the 14 hertz.

    這樣,我們就能得到 10 的 4.286 次方到 14 赫茲的頻率。

  • Now that we know the frequency, we can calculate the energy of the red photon.

    既然知道了頻率,我們就可以計算出紅色光子的能量。

  • So since we're only dealing with a single photon, and there's one, and then we have Planck's constant.

    既然我們只處理一個光子,而且只有一個,那麼我們就有了普朗克常數。

  • And then we have the frequency, 4.286 times 10 to the 14.

    然後是頻率,10 的 4.286 次方到 14。

  • I'm going to write 1 over seconds for the unit.

    我要寫 1 秒多的組織、部門。

  • So I got 2.84 times 10 to the negative 19 joules.

    所以我得到了 2.84 乘以 10 的負 19 焦耳。

  • So that is the energy of a single red photon.

    這就是一個紅色光子的能量。

  • That's how you can calculate it.

    這就是計算方法。

  • Now, let's work on one more problem.

    現在,我們再來解決一個問題。

  • What is the energy of 5 blue photons with a wavelength of 450 nanometers?

    波長為 450 納米的 5 個藍色光子的能量是多少?

  • So this problem is very similar to number 2.

    是以,這個問題與第 2 個問題非常相似。

  • The only difference is we have an n value of 5.

    唯一不同的是,我們的 n 值是 5。

  • So let's begin by calculating the frequency.

    是以,我們先來計算一下頻率。

  • The frequency is going to be the speed of light divided by the wavelength.

    頻率就是光速除以波長。

  • That's 3 times 10 to the 8 meters per second divided by 450 nanometers or 450 times 10 to the negative 9 meters.

    即每秒 8 米的 10 的 3 次方除以 450 納米,或 10 的 450 次方除以負 9 米。

  • So we're going to cancel the unit meters just like we did before.

    是以,我們要像之前一樣取消組織、部門儀表。

  • So this works out to be 6.67 times 10 to the 14 hertz.

    是以,10 的 6.67 倍等於 14 赫茲。

  • So now that we know the frequency, let's calculate the energy of the photon.

    既然知道了頻率,我們就來計算光子的能量。

  • So E is equal to n h f. n is 5 since we're dealing with 5 photons, 5 blue photons. h is always going to be the same, Planck's constant.

    所以 E 等於 n h f。n 是 5,因為我們面對的是 5 個光子,5 個藍光子。

  • That's not going to change.

    這一點不會改變。

  • So that's just a number you're going to have to commit to memory.

    所以,這只是一個你必須記住的數字。

  • And we have a frequency of this value.

    我們有這個值的頻率。

  • So 6.67 times 10 to the 14 times Planck's constant times 5 will give us this answer.

    是以,6.67 乘以 10,再乘以 14 倍普朗克常數乘以 5,就得出了這個答案。

  • So the energy of the 5 blue photons combined is going to be 2.21 times 10 to the negative 18 joules.

    是以,5 個藍色光子的能量總和將是 10 的 2.21 倍,即負 18 焦耳。

  • So now you know how to calculate the energy of a single photon or a group of photons if you know the frequency of the photons or their wavelength.

    現在您知道了,如果知道光子的頻率或波長,如何計算單個光子或一組光子的能量。

In this video, we're going to talk about Planck's constant and blackbody radiation.

在本視頻中,我們將討論普朗克常數和黑體輻射。

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋