Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • (upbeat music)

    (歡快的音樂)

  • - There have been a lot of news about ChatGPT lately

    - 最近有很多關於ChatGPT的消息

  • like people using ChatGPT to write essays,

    像人們使用ChatGPT來寫論文。

  • ChatGPT hitting a hundred million users,

    ChatGPT的用戶數達到了一億人。

  • Google launching Bard to compete against ChatGPT

    谷歌推出巴德,與ChatGPT競爭

  • and Microsoft integrating ChatGPT

    和微軟整合ChatGPT

  • into all their products, and also the viral sensation

    在他們所有的產品中,也有病毒性的轟動。

  • of CatGPT where it can answer all of your queries,

    的CatGPT,它可以回答你所有的疑問。

  • but as a cat, meow, meow, meow, meow, meow, meow.

    但作為一隻貓,喵、喵、喵、喵、喵、喵、喵。

  • ChatGPT, if you don't know already, it's a chat bot

    ChatGPT,如果你還不知道,它是一個哈拉機器人。

  • by OpenAI where you can ask it many things.

    由OpenAI提供,在那裡你可以問它很多事情。

  • For example, explaining complex topics

    例如,解釋複雜的主題

  • like explain why I'm a disappointment to my parents

    就像解釋為什麼我對我的父母很失望一樣

  • or ask it more technical questions like,

    或問它更多的技術問題,如。

  • how do I inherit more money than my brother from my parents?

    我怎樣才能從父母那裡繼承比我弟弟更多的錢?

  • A lot of people are using it to write essays, draft emails,

    很多人都在用它來寫論文,起草電子郵件。

  • and even write code.

    甚至是寫代碼。

  • So I tried it myself, of course, as a YouTuber obviously,

    所以我自己也試了一下,當然是作為一個優酷網友。

  • my first question to it was, who is Joma Tech?

    我對它的第一個問題是,Joma Tech是誰?

  • And it answered...

    而它的回答是...

  • Are you fucking--

    你他媽的...

  • You know, ChatGPT has a lot of limitations,

    你知道,ChatGPT有很多限制。

  • like here we ask it to name colors

    就像在這裡,我們要求它命名顏色

  • that don't have the letter E in them,

    不含字母E的。

  • and this is what they gave us.

    而這就是他們給我們的東西。

  • Orang, yllow, red, that's clearly wrong.

    橙色、黃色、紅色,這顯然是錯誤的。

  • In all seriousness,

    認真地說。

  • this is to demonstrate how ChatGPT works.

    這是為了演示ChatGPT是如何工作的。

  • It's a pre-trained large language model,

    這是一個預先訓練好的大型語言模型。

  • meaning it was trained on text data

    意味著它是在文本數據上訓練的

  • from the internet until the end of 2021.

    在2021年年底之前,從互聯網上獲取信息。

  • So it won't know anything

    所以它不會知道任何事情

  • about things that happened recently.

    關於最近發生的事情。

  • It doesn't have access to the internet.

    它沒有接入互聯網。

  • It'll only predict the answer based

    它只會根據以下情況預測答案

  • on what it has consumed already,

    在它已經消耗的東西上。

  • and the way it answers your question is

    而它回答你的問題的方式是

  • by predicting each word that comes next.

    通過預測接下來的每一個單詞。

  • For example, if you ask GPT who Bard is,

    例如,如果你問GPT,巴德是誰?

  • it's not going to know.

    它是不會知道的。

  • You might ask Joma, didn't your channel launch in 2017

    你可能會問Joma,你的頻道不是在2017年推出嗎?

  • and ChatGPT was trained on internet data until 2021,

    而ChatGPT在2021年之前都是根據互聯網數據進行訓練。

  • yet it doesn't know who you are?

    但它卻不知道你是誰?

  • Yeah, so there's actually a technical reason

    是的,所以實際上有一個技術原因

  • and fuck you.

    和他媽的你。

  • Recently ChatGPT hit a hundred million users.

    最近ChatGPT的用戶數達到了一億。

  • It launched November 30th, 2022,

    它於2022年11月30日啟動。

  • and this article came out February 3rd, 2023.

    而這篇文章是在2023年2月3日發表的。

  • So it took two months to hit a hundred million users.

    是以,它花了兩個月的時間就達到了一億用戶。

  • Who are these users and what are they doing with ChatGPT?

    這些用戶是誰,他們在用ChatGPT做什麼?

  • Well, it's pretty obvious, they're cheating with it.

    嗯,這很明顯,他們在用它作弊。

  • Everybody's cheating such that

    每個人都在作弊,這樣

  • some school districts have banned access to ChatGPT.

    一些學區已經禁止訪問ChatGPT。

  • If they can write essays, then they can pass exams.

    如果他們能寫論文,那麼他們就能通過考試。

  • ChatGPT was able to pass exams from law school,

    ChatGPT能夠通過法律學校的考試。

  • business school, and medical school.

    商學院和醫學院。

  • Three prestigious industries.

    三個著名的行業。

  • Now, this is why I went into coding

    現在,這就是我進入編碼領域的原因

  • because I always thought that law school,

    因為我一直認為,法律學校。

  • business school, and medical school,

    商學院和醫學院。

  • it was too much about memorization

    太多關於記憶的東西了

  • and you're bound to get replaced,

    而你一定會被替換。

  • it just wasn't intellectual enough, you know?

    它只是不夠聰明,你知道嗎?

  • All right, well,

    好了,好了。

  • I guess engineering is getting replaced, too.

    我想工程也在被取代。

  • ChatGPT passes Google coding interview,

    ChatGPT通過了谷歌的編碼面試。

  • which is known to be hard, but I guess not.

    眾所周知,這是很難的,但我想不是。

  • But note that it is for a L3 engineer,

    但請注意,這是針對L3級工程師的。

  • which means it's a entry level, for those not in tech,

    這意味著它是一個入門級,對那些不從事技術工作的人來說。

  • there's no L2 and L1, it starts at L3,

    沒有L2和L1,它從L3開始。

  • but this does raise questions about ChatGPT's ability

    但這確實讓人對ChatGPT的能力產生懷疑。

  • to change engineering jobs behind it,

    以改變它背後的工程工作。

  • and we're already seeing the change

    而且我們已經看到了這種變化

  • as Amazon employees are already using ChatGPT

    因為亞馬遜員工已經在使用ChatGPT

  • for coding even though that immediately after,

    為編碼,即使是緊接著。

  • they told them to stop, warning them not

    他們叫他們停下來,警告他們不要

  • to share confidential information with ChatGPT.

    與ChatGPT分享機密信息。

  • What's happening is they're feeding ChatGPT

    現在的情況是他們在給ChatGPT提供食物

  • internal documents, which are confidential,

    內部文件,這些文件是保密的。

  • but OpenAI stores all that data.

    但OpenAI存儲了所有這些數據。

  • You know, it reminds me of when I used to intern

    你知道,這讓我想起了我以前實習的時候

  • at Microsoft and they didn't let us use Google

    在微軟,他們不允許我們使用谷歌。

  • for searches because they think that they might spy on us.

    因為他們認為他們可能會監視我們,所以要進行搜查。

  • I was like, relax, I'm an intern.

    我當時說,放鬆,我是個實習生。

  • I'm not working on anything important.

    我沒有在做任何重要的工作。

  • In fact, I actually wasn't working at all.

    事實上,我實際上根本就沒有工作。

  • You know, I was playing Overwatch all day,

    你知道,我整天都在玩《守望先鋒》。

  • but yeah, anyways, they forced us to use Bing for searches.

    但是,無論如何,他們強迫我們使用Bing進行搜索。

  • One thing that's being underreported

    有一件事沒有被充分報道

  • in mainstream media is the success of GitHub Copilot.

    主流媒體的報道是GitHub Copilot的成功。

  • It's probably the most useful

    這可能是最有用的

  • and most well executed AI product currently out there.

    和目前執行得最好的人工智能產品。

  • Have I used it?

    我用過嗎?

  • No, I haven't coded in forever.

    不,我已經很久沒有編碼了。

  • Now, here's how it works.

    現在,事情是這樣的。

  • The moment you write your code,

    在你寫代碼的那一刻。

  • it's like auto complete on steroids, like this example,

    它就像類固醇的自動完成,就像這個例子。

  • it helps you write the whole drawScatterplot function

    它可以幫助你編寫整個drawScatterplot函數

  • and it knows how to use a D3 library correctly.

    而且它知道如何正確使用D3庫。

  • Another example here, you can write a comment

    這裡還有一個例子,你可以寫一個評論

  • explaining what you want your function to do

    解釋你希望你的函數做什麼

  • and it'll write the code for you.

    它就會為你寫代碼。

  • Sometimes even the name

    有時甚至連名字

  • of the function will give it enough information

    的函數會給它足夠的資訊

  • to write the rest of the code for you.

    來為你寫其餘的代碼。

  • It's very powerful

    它是非常強大的

  • because it's able to take your whole code base as context

    因為它能夠把你的整個代碼庫作為上下文。

  • and with that, make more accurate predictions that way.

    並以此為基礎,做出更準確的預測。

  • For example, if you're building a trading bot

    例如,如果你正在建立一個交易機器人

  • and you write the function get_tech_stock_prices,

    而你寫了函數get_tech_stock_prices。

  • it'll suggest, hey, I know you're going

    它將暗示,嘿,我知道你要去

  • through a rough time,

    通過一個艱難的時期。

  • but building a trading bot is not going

    但建立一個交易機器人並不是要

  • to fix your insecurities and maybe you should just accept

    來解決你的不安全感,也許你應該接受

  • that you'll be a disappointment for the rest of your life.

    你會在你的餘生中成為一個令人失望的人。

  • Okay.

    好的。

  • How did all of this happen?

    這一切是如何發生的?

  • Why is AI so good suddenly?

    為什麼人工智能突然變得這麼好?

  • The answer is the transformer model

    答案是變壓器模型

  • which caused a paradigm shift

    這引起了範式的轉變

  • on how we build large language models, LLM.

    關於我們如何建立大型語言模型,LLM。

  • By the way, this diagram means nothing to me.

    順便說一句,這張圖對我來說毫無意義。

  • It makes me look smart, so that's why I put it on there.

    它使我看起來很聰明,所以這就是我把它放在上面的原因。

  • Before transformers,

    在變壓器之前。

  • the best natural language processing system used RNN,

    最好的自然語言處理系統使用了RNN。

  • and then it used LSTM,

    然後,它使用了LSTM。

  • but then Google Brain published a paper

    但後來谷歌大腦發表了一篇論文

  • in 2017 called "Attention is All You Need"

    在2017年,名為 "關注是你所需要的一切"

  • which is also my life's motto because I'm a narcissist.

    這也是我的人生格言,因為我是一個自戀者。

  • The paper proposes a simple neural network model

    本文提出了一個簡單的神經網絡模型

  • they call transformer, which is based

    他們稱之為變壓器,它是基於

  • on the self attention mechanism

    關於自我注意機制

  • which I don't fully understand, so I'll pretend

    我並不完全理解,所以我就假裝

  • like I don't have time to explain it

    就像我沒有時間去解釋它一樣

  • but I also know that it allows for more parallelization

    但我也知道,它可以實現更多的並行化

  • which means you can throw more hardware,

    這意味著你可以扔更多的硬件。

  • more GPUs to make your training go faster

    更多的GPU,使你的訓練更快進行

  • and that's when things got crazy.

    就在這時,事情變得瘋狂起來。

  • They kept adding more data and also added more parameters

    他們不斷添加更多的數據,也添加更多的參數

  • and the model just got better.

    而且該模型剛剛變得更好。

  • So what did we do?

    那麼我們做了什麼?

  • We made bigger models with more parameters

    我們做了更大的模型,有更多的參數

  • and shoved it a shit ton of data.

    並把一噸的數據塞給它。

  • Sorry, I'm trying my best here to make the model bigger.

    對不起,我在這裡盡力使模型變大。

  • All right, fuck it.

    好吧,去他媽的。

  • Anyway, that gave us ready

    總之,這讓我們準備好了

  • to use pre-trained transformer models like Google's Bert,

    來使用預先訓練好的轉化器模型,如谷歌的Bert。

  • and OpenAI's GPT, generative pre-trained transformers.

    和OpenAI的GPT,生成性預訓練的轉化器。

  • They crawled the whole web to get text data

    他們抓取了整個網絡來獲得文本數據

  • from Wikipedia and Reddit.

    來自維基百科和Reddit。

  • This graph shows you how many parameters each model has.

    該圖顯示了每個模型有多少個參數。

  • So as you can see, we've been increasing the number

    是以,正如你所看到的,我們一直在增加

  • of parameters exponentially.

    的參數呈指數增長。

  • So OpenAI kept improving their GPT model

    所以OpenAI不斷改進他們的GPT模型

  • like how Goku kept becoming stronger each time

    就像悟空每次都會變得更強

  • he reached a new Super Saiyan form.

    他達到了一個新的超級賽亞人形態。

  • While editing this,

    在編輯這個的時候。

  • I realized how unhelpful the "Dragon Ball" analogy was.

    我意識到 "龍珠 "的比喻是多麼的無助。

  • So I want to try again.

    所以我想再試試。

  • To recap, transformer was the model architecture,

    簡而言之,變壓器是模型架構。

  • a type of neural network.

    一種類型的神經網絡。

  • Other types of models would be like RNN and LSTM.

    其他類型的模型將像RNN和LSTM。

  • Compared to RNN, transformers don't need

    與RNN相比,變壓器不需要

  • to process words one by one,

    來逐一處理單詞。

  • so it's way more efficient at training with lots of data.

    所以它在大量數據的訓練中更有效率。

  • OpenAI used the transformer model and pre-trained it

    OpenAI使用了轉化器模型並對其進行了預訓練

  • by feeding it a bunch of data from the internet

    通過從互聯網上輸入一堆數據來實現。

  • and they called that pre-trained model GPT-1.

    他們把這個預訓練的模型稱為GPT-1。

  • Back then, NLP models would be trained from scratch

    那時,NLP模型會從頭開始訓練

  • for a specific task like translation or summarization.

    為一項特定的任務,如翻譯或總結。

  • Both transformer, we get to pre-train the model first

    兩個變壓器,我們都要先對模型進行預訓練

  • then fine tune it for a specific task.

    然後針對具體任務進行微調。

  • Then for GPT-2, they did the same thing, but more

    然後對於GPT-2,他們做了同樣的事情,但更多的是

  • and with a bigger model, hence with 1.5 billion parameters,

    並有一個更大的模型,是以有15億個參數。

  • and then with GPT-3,

    然後用GPT-3。

  • they went crazy and gave it 175 billion parameters.

    他們瘋了,給了它1750億的參數。

  • However, just like raising a kid,

    然而,就像養育一個孩子一樣。

  • just shoving it with a bunch

    只是用一群人推著它

  • of information unsupervised might not be the best way

    無監督的資訊可能不是最好的方式。

  • to raise a kid.

    來撫養一個孩子。

  • She might know a lot of things,

    她可能知道很多事情。

  • but she hasn't learned proper values from her parents.

    但她還沒有從父母那裡學到正確的價值觀。

  • So that's why we have to fine tune it, tell it what's right,

    所以這就是為什麼我們必須對它進行微調,告訴它什麼是正確的。

  • and what's wrong, how not to be racist and clean up its act.

    以及什麼是錯的,如何不成為種族主義者並清理其行為。

  • That's GPT-3.5, a more fine-tuned version of GPT-3

    這是GPT-3.5,是GPT-3的一個更微調的版本。

  • with guardrails that can be released to the public.

    有護欄,可以向公眾發佈。

  • Now you have a decently well-behaved kid,

    現在你有一個體面的乖巧的孩子。

  • but you now want to show her off, so you dress it up nicely,

    但你現在想向她炫耀,所以你把它打扮得很好。

  • get her ready for her first job, AKA more fine tuning

    讓她為她的第一份工作做好準備,又稱更多的微調。

  • with some supervised training

    有一些監督的培訓

  • so it behaves properly as a chat bot.

    這樣它就能正確地作為一個哈拉機器人行事。

  • That way it's well packaged and is ready to ship

    這樣一來,它就被包裝得很好,可以隨時發貨。

  • to the world with a web UI.

    通過網絡用戶界面向世界展示。

  • Okay, back to the original shitty "Dragon Ball" explanation.

    好吧,回到最初的低劣的 "龍珠 "解釋上。

  • So you can think of Goku's hair,

    所以你可以想到悟空的頭髮。

  • like the number of parameters, 175 billion parameters,

    像參數的數量,1750億個參數。

  • which is why you can see Goku has more hair now.

    這就是為什麼你可以看到悟空現在有更多的頭髮。

  • Goku hair isn't much longer,

    悟空的頭髮並沒有多長。

  • but it's just styled a little bit differently.

    但它只是在風格上有一點不同。

  • 100 trillion parameters.

    100萬億個參數。

  • So technically GPT-3 was already amazing

    所以技術上來說,GPT-3已經很了不起了

  • but OpenAI was able to package it neatly with ChatGPT

    但OpenAI能夠將其與ChatGPT整齊地打包。

  • which made it user friendly, so it became a viral sensation.

    這使得它對用戶友好,所以它成為一種病毒式的轟動。

  • So yeah, packaging is important.

    所以,是的,包裝很重要。

  • It caused everyone to really pay attention to this.

    這引起了大家對此事的真正關注。

  • So how did people react to the viral growth of ChatGPT?

    那麼,人們對ChatGPT的病毒式增長有什麼反應?

  • People were mind blown and said, Google is done

    人們心花怒放,說,谷歌已經完成了

  • because ChatGPT is going to replace search engines.

    因為ChatGPT將取代搜索引擎。

  • No, it can't.

    不,它不能。

  • Until it can search for porn,

    直到它能搜索到色情。

  • it cannot replace search engines.

    它不能取代搜索引擎。

  • Oh, wait, why search for porn

    哦,等等,為什麼要搜索色情

  • when you could generate it?

    當你能產生它的時候?

  • (upbeat music)

    (歡快的音樂)

  • Anyway, even losing a bit of search volume

    無論如何,即使失去一點搜索量

  • to ChatGPT would be a big deal for Google

    到ChatGPT將是谷歌的一個大事件。

  • since 80% of their revenue comes from ads

    因為他們80%的收入來自於廣告

  • and most of it comes from search.

    而其中大部分來自於搜索。

  • People were telling Google to release something similar.

    人們告訴谷歌要發佈類似的東西。

  • Google was like, bruh, we have LaMDA,

    谷歌就像,哥們兒,我們有LaMDA。

  • which is basically ChatGPT, but releasing it would be risky

    這基本上是ChatGPT,但發佈它將是有風險的。

  • as they had much more reputational risk at stake

    因為他們面臨的聲譽風險要大得多

  • and has to move more conservatively than a startup would.

    並且必須比初創公司更保守地行動。

  • That's foreshadowing by the way.

    順便說一句,這就是預示。

  • Microsoft is chilling.

    微軟令人心寒。

  • They positioned themselves really well

    他們把自己定位得非常好

  • by investing $1 billion in OpenAI early on in 2019.

    通過在2019年初向OpenAI投資10億美元。

  • That allowed OpenAI to leverage Microsoft's Azure

    這使得OpenAI能夠利用微軟的Azure

  • for its compute power to train and run their models

    因為它的計算能力可以訓練和運行他們的模型

  • and Microsoft gets to integrate OpenAI's tech

    和微軟得到整合OpenAI的技術

  • into their products.

    融入他們的產品。

  • So if OpenAI succeeds,

    是以,如果OpenAI成功了。

  • Microsoft succeeds and remember GitHub Copilot?

    微軟成功了,還記得GitHub Copilot嗎?

  • Well, GitHub is owned by Microsoft, so that's a huge win.

    好吧,GitHub是由微軟擁有的,所以這是一個巨大的勝利。

  • Meanwhile, Google is panicking

    與此同時,谷歌正在恐慌中

  • and issued a code red,

    併發出了紅色代碼。

  • calling in the OG founders Page and Brin.

    召集OG創始人佩奇和布林。

  • Actually I have no idea who's who, so...

    事實上,我不知道誰是誰,所以......。

  • Anyways, but they called them to strategize

    不管怎麼說,但他們叫他們去制定戰略

  • on how to approach this.

    關於如何處理這個問題。

  • Microsoft is fueling the momentum, especially

    微軟正在為這一勢頭推波助瀾,特別是

  • with ChatGPT growing so fast

    隨著ChatGPT的快速增長

  • and the tech is very promising.

    而這項技術是非常有前途的。

  • So Microsoft invests another $10 billion

    所以微軟又投資了100億美元

  • into OpenAI for a 49% stake in the company.

    進入OpenAI,獲得該公司49%的股份。

  • That money can help OpenAI,

    這些錢可以幫助OpenAI。

  • I don't know, unlock Super Saiyan 4, maybe.

    我不知道,也許是解鎖超級賽亞人4吧。

  • Microsoft also plans to integrate GPT

    微軟還計劃整合GPT

  • into Microsoft Teams following the same playbook

    遵循同樣的遊戲規則進入微軟團隊

  • as what they did with GitHub Copilot

    正如他們對GitHub Copilot所做的那樣

  • which would be huge for them.

    這對他們來說將是巨大的。

  • Google also made some additional moves.

    谷歌還採取了一些額外的行動。

  • Google invests almost $400 million

    谷歌投資近4億美元

  • in OpenAI's rival Anthropic, which is pocket change compared

    在OpenAI的競爭對手Anthropic中,這是個很小的變化。

  • to the $10 billion Microsoft invested.

    到微軟投資的100億美元。

  • If you don't know what Anthropic is, it doesn't matter.

    如果你不知道什麼是 "人類學",這並不重要。

  • It's like the Burger King of OpenAI.

    這就像OpenAI的漢堡王。

  • Google goes back on their word

    谷歌出爾反爾

  • about not launching a ChatGPT clone

    關於不啟動ChatGPT克隆的問題

  • and announces Bard AI, a ChatGPT clone.

    並宣佈了Bard AI,一個ChatGPT的克隆。

  • Remember when I said they didn't wanna launch

    記得我說過他們不想發射的時候嗎?

  • a ChatGPT competitor because of reputational risk?

    由於聲譽風險,一個ChatGPT的競爭對手?

  • Well, funny enough, that's exactly what happened.

    好吧,有趣的是,這正是所發生的事情。

  • The AI made a mistake in the ad

    AI在廣告中犯了一個錯誤

  • and Google shares tanked, losing a hundred billion dollars

    和谷歌股價下跌,損失了一千億美元

  • and I still own my Google stocks from when I worked there.

    而且我仍然擁有我在那裡工作時的谷歌股票。

  • The mistake was Bard said,

    錯的是巴德說。

  • "JWST took the very first pictures

    "JWST拍攝了第一批照片

  • "of a planet outside of our own solar system."

    "我們太陽系以外的行星"。

  • But this astronaut said, "No, it was not true, Chauvin did."

    但這位太空人說:"不,這不是真的,是周文做的。"

  • That tweet alone cost me a lot of money.

    光是那條推特就花了我很多錢。

  • Anyway, Microsoft responded to the announcement

    無論如何,微軟對該公告作出了迴應

  • by releasing a new Bing with ChatGPT built in

    通過發佈一個內置ChatGPT的新Bing

  • to compete with Google search.

    以與谷歌搜索競爭。

  • Meanwhile, we have Meta, who is in denial.

    同時,我們有梅塔,他在否認。

  • Meta's AI chief says,

    Meta公司的人工智能主管說。

  • "ChatGPT Tech is not particularly innovative."

    "ChatGPT技術不是特別創新"。

  • That is just massive copium.

    這只是大量的 copium。

  • Finally, we got Netflix,

    最後,我們得到了Netflix。

  • who's too busy cracking down on password sharing

    忙於打擊密碼共享的人

  • to care about AI.

    來關心人工智能。

  • All right, what about us engineers?

    好吧,那我們這些工程師呢?

  • What's the future for us?

    我們的未來是什麼?

  • The reality is

    現實是

  • that GPT isn't replacing anybody's job completely.

    GPT並沒有完全取代任何人的工作。

  • Like most technological innovations,

    像大多數技術革新一樣。

  • that change can seem drastic

    變化似乎很劇烈

  • because the media loves dramatic titles.

    因為媒體喜歡戲劇性的標題。

  • But if you're open-minded, you have time to learn

    但如果你思想開放,你就有時間去學習

  • about it and embrace it rather than fighting it.

    關於它,擁抱它,而不是對抗它。

  • If you're a software engineer and you feel threatened

    如果你是一名軟件工程師,而你感到受到了威脅

  • by ChatGPT being able to solve FizzBuzz, oof,

    由ChatGPT能夠解決FizzBuzz的問題,Oof。

  • then you should maybe consider becoming a YouTuber.

    那麼你也許應該考慮成為一名優酷網主。

  • Just kidding.

    只是在開玩笑。

  • Please don't compete with me.

    請不要和我競爭。

  • Though, you should incorporate ChatGPT

    雖然,你應該加入ChatGPT

  • and GitHub Copilot to your workflow.

    和GitHub Copilot到你的工作流程。

  • It really removes tedious parts of software engineering.

    它真正消除了軟件工程的繁瑣部分。

  • If you're working in a new language or API library,

    如果你在一個新的語言或API庫中工作。

  • you don't have to Google, sorry, Google,

    你不需要谷歌,對不起,谷歌。

  • you don't have to Google endlessly

    你不必無休止地在谷歌上搜索

  • for the stuff you already know.

    對於你已經知道的東西。

  • Just break down and describe your problem

    只要分解和描述你的問題

  • to ChatGPT to get a huge headstart

    到ChatGPT來獲得巨大的先機

  • or get good at coding alongside Copilot.

    或與Copilot一起善於編碼。

  • If you structure your code base well

    如果你能很好地構建你的代碼庫

  • and write good comments that describe what you want to do,

    並寫好評論,描述你想做什麼。

  • Copilot often gets the logic problems right.

    副駕駛常常能把邏輯問題解決好。

  • It's a symbiotic relationship.

    這是一種共生的關係。

  • Become the cyborg.

    成為機械人。

  • See, the trick here is that, as a software engineer,

    看,這裡的訣竅是,作為一個軟件工程師。

  • your job is to translate

    你的工作是翻譯

  • and break down a business problem into software problems.

    並將一個商業問題分解為軟件問題。

  • Your job is to know what questions to ask

    你的工作是知道要問什麼問題

  • and what answers to accept.

    以及接受什麼答案。

  • In fact, here's my prediction.

    事實上,我的預測是這樣的。

  • GitHub Copilot is not done innovating here.

    GitHub Copilot在這方面的創新還沒有完成。

  • Their next big product release will turn an issue

    他們的下一個大型產品發佈將變成一個問題

  • or PR description into an actual full-blown code commit.

    或PR描述變成一個實際的完整的代碼提交。

  • So as a software engineer in 2024, you better get real good

    是以,作為2024年的軟件工程師,你最好能真正做好

  • at writing GitHub issues and reviewing PRs.

    擅長寫GitHub問題和審查PR。

  • All right, that's it for this ChatGPT video,

    好了,本次ChatGPT視頻就到此為止。

  • but I think this ChatGPT narrative is just one battle

    但我認為這個ChatGPT的敘述只是一場戰鬥

  • of a bigger AI war that's happening

    一個更大的人工智能戰爭正在發生

  • between Microsoft and Google.

    微軟和谷歌之間。

  • I'll talk about that next time.

    我下次再談這個問題。

  • See you and thanks for watching,

    再見,感謝您的觀看。

  • and remember to call your parents.

    並記得給你的父母打電話。

  • (upbeat musical effect)

    (歡快的音樂效果)

(upbeat music)

(歡快的音樂)

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋