Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • Let's learn a little bit about the law of large numbers, which

    讓我們來學習一下大數定律,它的作用是

  • is on many levels, one of the most intuitive laws in

    是在很多層面上,最直觀的規律之一。

  • mathematics and in probability theory.

    數學和概率論方面。

  • But because it's so applicable to so many things, it's often a

    但因為它適用於很多事情,所以它常常是一個。

  • misused law or sometimes, slightly misunderstood.

    被誤用的法律或有時,稍有誤解。

  • So just to be a little bit formal in our mathematics, let

    所以,為了讓我們的數學更正式一點,讓

  • me just define it for you first and then we'll talk a little

    我就先給你下個定義,然後我們再聊一聊。

  • bit about the intuition.

    位的直觀感受。

  • So let's say I have a random variable, X.

    所以,讓我們'說我有一個隨機變量,X。

  • And we know its expected value or its population mean.

    而我們知道它的期望值或它的人口平均值。

  • The law of large numbers just says that if we take a sample

    大數定律只是說,如果我們取一個樣本。

  • of n observations of our random variable, and if we were

    我們的隨機變量的n個觀測值,如果我們是

  • to average all of those observations-- and let me

    平均所有這些觀察 - -讓我

  • define another variable.

    定義另一個變量。

  • Let's call that x sub n with a line on top of it.

    讓我們把那個x子n叫做上面有一條線。

  • This is the mean of n observations of our

    這是我們的n次觀測的平均值。

  • random variable.

    隨機變量。

  • So it's literally this is my first observation.

    所以它'的字面意思是這是我的第一個觀察。

  • So you can kind of say I run the experiment once and I get

    所以,你可以說,我運行的實驗一次,我得到。

  • this observation and I run it again, I get that observation.

    這個觀察結果,我再運行一次,就會得到這個觀察結果。

  • And I keep running it n times and then I divide by my

    我繼續運行n次,然後我除以我的。

  • number of observations.

    意見的數量;

  • So this is my sample mean.

    所以這是我的樣本平均值。

  • This is the mean of all the observations I've made.

    這是我所有觀察結果的平均值'。

  • The law of large numbers just tells us that my sample mean

    大數定律只是告訴我們,我的樣本平均值

  • will approach my expected value of the random variable.

    將接近我對隨機變量的期望值。

  • Or I could also write it as my sample mean will approach my

    或者我也可以寫成我的樣本平均值將接近我的

  • population mean for n approaching infinity.

    n接近無窮大時的人口平均值。

  • And I'll be a little informal with what does approach or

    而我'會有點非正式的做法,什麼是方法或。

  • what does convergence mean?

    融合是什麼意思?

  • But I think you have the general intuitive sense that if

    但我想你有一般的直觀感受,如果說

  • I take a large enough sample here that I'm going to end up

    我在這裡採取了足夠大的樣本,我'要結束了。

  • getting the expected value of the population as a whole.

    得到整體人口的預期值。

  • And I think to a lot of us that's kind of intuitive.

    我想對我們很多人來說,這是一種直覺。

  • That if I do enough trials that over large samples, the trials

    如果我做了足夠多的試驗,在大的樣本中,試驗...

  • would kind of give me the numbers that I would expect

    會種給我的數字,我希望

  • given the expected value and the probability and all that.

    給定的預期值和概率和所有這些。

  • But I think it's often a little bit misunderstood in terms

    但我認為它經常有點誤解的方面'。

  • of why that happens.

    的原因。

  • And before I go into that let me give you

    在我說這個之前,讓我給你說說

  • a particular example.

    一個特別的例子。

  • The law of large numbers will just tell us that-- let's say I

    大數定律會告訴我們--------比如說我

  • have a random variable-- X is equal to the number of heads

    有一個隨機變量--X等於人頭數。

  • after 100 tosses of a fair coin-- tosses or flips

    百發百中

  • of a fair coin.

    幣的公平。

  • First of all, we know what the expected value of

    首先,我們可以知道什麼是預期值

  • this random variable is.

    這個隨機變量是。

  • It's the number of tosses, the number of trials times

    這是'的折騰次數,試驗次數。

  • the probabilities of success of any trial.

    任何審判的成功概率;

  • So that's equal to 50.

    所以,這'等於50。

  • So the law of large numbers just says if I were to take a

    所以,大數定律只是說,如果我拿一個。

  • sample or if I were to average the sample of a bunch of these

    的樣本,或者說如果我把這些樣本的平均數。

  • trials, so you know, I get-- my first time I run this trial I

    試驗,所以你知道,我... ... 我第一次參加這個試驗時,我...

  • flip 100 coins or have 100 coins in a shoe box and I shake

    拋出100個硬幣或有100個硬幣在鞋盒裡,我搖動。

  • the shoe box and I count the number of heads, and I get 55.

    鞋盒裡,我數了數人頭的數量,得到55個。

  • So that Would be X1.

    所以這將是X1。

  • Then I shake the box again and I get 65.

    然後我再搖一搖盒子,我得到65。

  • Then I shake the box again and I get 45.

    然後我又搖了搖盒子,我得到了45。

  • And I do this n times and then I divide it by the number

    我這樣做n次,然後我把它除以數字。

  • of times I did it.

    的時候,我做了。

  • The law of large numbers just tells us that this the

    大數定律只是告訴我們,這是個

  • average-- the average of all of my observations, is going

    平均 - 平均我所有的觀察,是怎麼回事

  • to converge to 50 as n approaches infinity.

    當n接近無窮大時,收斂到50。

  • Or for n approaching 50.

    或者對於n接近50。

  • I'm sorry, n approaching infinity.

    我'對不起,n接近無窮大。

  • And I want to talk a little bit about why this happens

    我想說說為什麼會發生這種情況。

  • or intuitively why this is.

    或直觀地瞭解到這是為什麼。

  • A lot of people kind of feel that oh, this means that if

    很多人都有點覺得,哦,這意味著,如果。

  • after 100 trials that if I'm above the average that somehow

    經過100次試驗,如果我高於平均水平,不知何故。

  • the laws of probability are going to give me more heads

    概率法則會給我更多的人頭

  • or fewer heads to kind of make up the difference.

    或更少的人頭,算是彌補了這一差距。

  • That's not quite what's going to happen.

    那'不完全是'要發生的事。

  • That's often called the gambler's fallacy.

    這'就是常說的賭徒'的謬論。

  • Let me differentiate.

    讓我來區分一下。

  • And I'll use this example.

    而我'就用這個例子。

  • So let's say-- let me make a graph.

    所以,讓我們'say -- 讓我做一個圖。

  • And I'll switch colors.

    而我'會換顏色。

  • This is n, my x-axis is n.

    這是n,我的x軸是n。

  • This is the number of trials I take.

    這是我參加的試驗次數。

  • And my y-axis, let me make that the sample mean.

    而我的Y軸,讓我把它變成樣本平均值。

  • And we know what the expected value is, we know the expected

    我們知道什麼是預期值,我們知道預期的。

  • value of this random variable is 50.

    這個隨機變量的值是50。

  • Let me draw that here.

    讓我把它畫在這裡。

  • This is 50.

    這是50。

  • So just going to the example I did.

    所以就以我做的例子來說明。

  • So when n is equal to-- let me just [INAUDIBLE]

    所以,當n等於 -- 讓我[聽不清]。

  • here.

    在這裡。

  • So my first trial I got 55 and so that was my average.

    所以我的第一次試驗我得了55分,所以這是我的平均成績。

  • I only had one data point.

    我只有一個數據點。

  • Then after two trials, let's see, then I have 65.

    然後經過兩次試驗,讓'看看,那麼我有65。

  • And so my average is going to be 65 plus 55 divided by 2.

    所以我的平均數將是65加55除以2。

  • which is 60.

    這是60。

  • So then my average went up a little bit.

    所以後來我的平均水平就上升了一點。

  • Then I had a 45, which will bring my average

    然後,我有一個45,這將使我的平均。

  • down a little bit.

    下了一點。

  • I won't plot a 45 here.

    我不會在這裡策劃一個45號。

  • Now I have to average all of these out.

    現在我得把這些東西平均起來。

  • What's 45 plus 65?

    什麼是45加65?

  • Let me actually just get the number just

    讓我實際上只是得到的數字只是

  • so you get the point.

    所以你得到的點。

  • So it's 55 plus 65.

    所以是55加65。

  • It's 120 plus 45 is 165.

    它'的120加45是165。

  • Divided by 3.

    除以3。

  • 3 goes into 165 5-- 5 times 3 is 15.

    3進入165 5 -- 5次3是15。

  • It's 53.

    這是53。

  • No, no, no.

    不,不,不。

  • 55.

    55.

  • So the average goes down back down to 55.

    所以平均數又回落到55。

  • And we could keep doing these trials.

    我們可以繼續做這些試驗。

  • So you might say that the law of large numbers tell this,

    所以你可以說,大數法則告訴。

  • OK, after we've done 3 trials and our average is there.

    好了,在我們'做了3次試驗,我們的平均水平在那裡。

  • So a lot of people think that somehow the gods of probability

    所以,很多人認為,不知為何,概率之神。

  • are going to make it more likely that we get fewer

    將使我們更有可能得到更少的。

  • heads in the future.

    頭在未來。

  • That somehow the next couple of trials are going to have to

    接下來的幾場審判都要以某種方式進行

  • be down here in order to bring our average down.

    為了讓我們的平均水平下降,在這裡下。

  • And that's not necessarily the case.

    而事實卻未必如此。

  • Going forward the probabilities are always the same.

    往後的概率總是一樣的。

  • The probabilities are always 50% that I'm

    概率永遠是50%,我'米。

  • going to get heads.

    會得到頭。

  • It's not like if I had a bunch of heads to start off with or

    它不像如果我有一堆頭開始或

  • more than I would have expected to start off with, that all of

    比我一開始預想的更多,所有的

  • a sudden things would be made up and I would get more tails.

    一下子事情就會被編造出來,我就會得到更多的尾巴。

  • That would the gambler's fallacy.

    這將賭徒'的謬論。

  • That if you have a long streak of heads or you have a

    如果你有一個長長的人頭或你有一個。

  • disproportionate number of heads, that at some point

    過多的人頭,以至於在某些時候

  • you're going to have-- you have a higher likelihood of having a

    你會有 - 你有一個較高的可能性 有一個。

  • disproportionate number of tails.

    不成比例的尾數。

  • And that's not quite true.

    而這並不完全正確。

  • What the law of large numbers tells us is that it doesn't

    大數定律告訴我們的是,它不'。

  • care-- let's say after some finite number of trials your

    照顧--比方說,經過一些有限的試驗,你的。

  • average actually-- it's a low probability of this happening,

    其實平均--------這種情況發生的概率很低。

  • but let's say your average is actually up here.

    但讓我們'說你的平均水平實際上是在這裡。

  • Is actually at 70.

    其實是在70。

  • You're like, wow, we really diverged a good bit from

    你'喜歡,哇,我們真的分歧了一個很好的位從

  • the expected value.

    的預期值。

  • But what the law of large numbers says, well, I don't

    但大數法則怎麼說,我不';。

  • care how many trials this is.

    關心這是多少個試驗。

  • We have an infinite number of trials left.

    我們還有無限次的試驗。

  • And the expected value for that infinite number of trials,

    而這無限次試驗的預期值。

  • especially in this type of situation is going to be this.

    尤其是在這種情況下是會這。

  • So when you average a finite number that averages out to

    所以,當你把一個有限的數平均起來,平均到

  • some high number, and then an infinite number that's going to

    一些高數,然後一個無限的數字,'的要去

  • converge to this, you're going to over time, converge back

    趨向於此,你會隨著時間的推移,趨向於此。

  • to the expected value.

    到預期值。

  • And that was a very informal way of describing it, but

    這是一種非常非正式的描述方式,但是... ...

  • that's what the law or large numbers tells you.

    這'就是法律或大數告訴你的。

  • And it's an important thing.

    而這'是一件重要的事情。

  • It's not telling you that if you get a bunch of heads that

    它'不是告訴你,如果你得到了一群頭,。

  • somehow the probability of getting tails is going

    某種程度上,得到尾巴的概率是要的

  • to increase to kind of make up for the heads.

    來增加,以種彌補頭。

  • What it's telling you is, is that no matter what happened

    它告訴你的是,不管發生了什麼事情

  • over a finite number of trials, no matter what the average is

    在有限的試驗次數中,無論平均數是多少,都是如此。

  • over a finite number of trials, you have an infinite

    在有限的試驗次數中,你有一個無限的

  • number of trials left.

    剩下的審判次數。

  • And if you do enough of them it's going to converge back

    如果你做了足夠多的人,它就會匯合回來。

  • to your expected value.

    到你的預期值。

  • And this is an important thing to think about.

    而這是一件很重要的事情,值得思考。

  • But this isn't used in practice every day with the lottery and

    但這並不是用在實踐中天天中彩票和。

  • with casinos because they know that if you do large enough

    因為他們知道,如果你做的足夠大的

  • samples-- and we could even calculate-- if you do large

    樣本 -- 我們甚至可以計算 -- 如果你做大的。

  • enough samples, what's the probability that things

    足夠的樣本,什麼'的概率的東西

  • deviate significantly?

    偏差很大?

  • But casinos and the lottery every day operate on this

    但賭場和彩票每天都在此基礎上進行操作。

  • principle that if you take enough people-- sure, in the

    原則,如果你採取足夠的人 - 當然,在... ...

  • short-term or with a few samples, a couple people

    短期或有幾個樣品,幾個人。

  • might beat the house.

    可能會打敗房子。

  • But over the long-term the house is always going to win

    但從長遠來看,房子總是要贏的。

  • because of the parameters of the games that they're

    因為他們'遊戲的參數。

  • making you play.

    讓你玩。

  • Anyway, this is an important thing in probability and I

    總之,這是概率中很重要的一件事,我

  • think it's fairly intuitive.

    認為它'相當直觀。

  • Although, sometimes when you see it formally explained like

    雖然,有時當你看到它的正式解釋,如

  • this with the random variables and that it's a little

    這與隨機變量,它是一個小的

  • bit confusing.

    有點混亂。

  • All it's saying is that as you take more and more samples, the

    所有它說的是,當你採取越來越多的樣品,。

  • average of that sample is going to approximate the

    該樣本的平均數將近似於...

  • true average.

    真正的平均值。

  • Or I should be a little bit more particular.

    或者我應該更特別一點。

  • The mean of your sample is going to converge to the true

    你的樣本的均值將趨近於真實的。

  • mean of the population or to the expected value of

    人口的平均值或預期值。

  • the random variable.

    的隨機變量。

  • Anyway, see you in the next video.

    總之,下一個視頻裡見。

Let's learn a little bit about the law of large numbers, which

讓我們來學習一下大數定律,它的作用是

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋