Placeholder Image

字幕列表 影片播放

  • WHAT IS THE SHAPE OF SPACE?

    我們常會認為空間是個會有事情發生的「虛無」

  • We're used to thinking of space as the emptiness in which things happen, like an empty warehouse

    像是一個倉庫等著被填滿 或是一個宇宙事件發生的舞台

  • ready to be filled, or a theater stage on which the events of the Universe play out.

    但廣義相對論預測了空間不僅僅是片「虛無」

  • But General Relativity predicts that space is not just emptiness, it's a physical,

    它是個物體般動態的東西 而這個預測已經被許多實驗證實了

  • dynamic thing, and that prediction has been borne out by many, many experiments.

    空間之所以可以彎折是因為其中的物質和能量 且扭曲物體在其中運行的路線

  • Space can bend because of matter and energy, curving the paths of objects that move inside

    它會因重力波而振動 也可以膨脹而在空間中創造出更多「空間」

  • of it.

    以上這些現象可以用一個概念來說明: 空間(或是時空)的曲度

  • It can ripple with gravitational waves And it can expand, creating more and more space

    在時空平坦的區域中(像是附近沒有物質或能量)

  • between two objects.

    物體平行移動仍保持平行

  • All of these phenomena can be described by one idea: curvature of space (or spacetime).

    在時空曲度為正的區域中(像是在行星或黑洞附近) 平行移動的物體會相戶接近

  • In flat regions of spacetime (like, if there's no energy or matter nearby), objects traveling

    而時空曲度為負的區域中物體平行移動 (甚至是互相會聚)會相互遠離

  • along parallel paths stay along parallel paths.

    那如果空間是一體的呢? 如果時空曲度在哪裡都為正

  • In positively curved regions of spacetime (like near planets or black holes), parallel

    那空間只會有一種形狀── 一個距大的超空間馬鈴薯

  • paths converge, and in negatively curved regions of spacetime parallel paths (or even paths

    如果你朝著同一方向不斷行走 那你就會回到你開始的地方

  • pointed at each other!) diverge.

    如果時空在哪裡都是平的 那它的形狀簡單的就是──無限伸直

  • But what about space as a whole ? If space is positively curved everywhere, then there's

    或是類似電玩遊戲裡的無限迴圈

  • only one shape space can be: a giant hyper-potato.

    那如果時空在哪裡曲度都為負 那體育都將行不通

  • If you went in one direction for long enough, eventually you'd end up in the same place

    所以 到底是哪一種呢?

  • you started.

    基本上有兩種方式量測宇宙大尺度的曲度

  • If space is flat everywhere, its shape could be simple: just extend out straight to infinity.

    第一個是量測一個三角形的內角和

  • Or it could loop around in a periodic way, like in some video games:

    如果空間是平的  那內角和將會是 180 度

  • And if space is negatively curved everywhere, sports would be impossible

    但如果空間是彎曲的話 內角和會因彎曲類型的不同而大於或小於 180 度

  • So which is it?

    宇宙學家已經藉由早期宇宙的照片

  • There are basically two ways to measure the large-scale curvature of the Universe.

    量測照片上三點的特殊關係 來計算所圍成的三角形的內角和

  • One is to measure the angles inside of triangles.

    第二種量測曲度的方法是去 量測造成空間彎曲的東西──

  • If the space is flat, then the angles will add up to 180 degrees.

    宇宙中物質和能量分部的密度

  • But if the space is curved, those angles will add up to more or less than 180 degrees depending

    這也是個已經被宇宙學家所量測的東西

  • on the type of curvature.

    最終的量測結果表示... 宇宙幾乎是平的(只有 0.4% 的誤差)

  • Cosmologists have done the equivalent of measuring our Universe's triangles by looking at a

    但在你對於我們不是生活在一個酷炫的 超空間馬鈴薯上而感到失望前

  • picture of the early Universe, and studying the spatial relationship between different

    讓我來告訴你一個大問題:

  • points on that picture.

    我們居住的宇宙是「平的」 似乎是個巨大、難以想像的巧合

  • The second way to measure curvature is to measure the thing that causes space to curve

    如果宇宙只多出了一點質量或能量 那空間就會朝向一個方向彎曲

  • in the first place: the density of energy and matter throughout the Universe.

    那如果只少了一點質量或能量 空間就會朝向另一個方向彎曲

  • Which cosmologists have also measured.

    但我們所觀測到的來說 宇宙似乎有剛剛好的質量和能量維持平坦

  • It turns out that in both cases, measurements show the Universe to bepretty much flat

    這完美的比例差不多是 平均每立方公尺內有五個氫原子

  • (within 0.4% margin of error).

    而宇宙中那些沒有東西的部分的原子 就聚集在一起而創造了我們

  • But before you get disappointed that we don't live in a cool cosmic hyper-potato, let me

    但如果平均每立方公尺有六個或四個氫原子

  • tell you one big problem

    那整個宇宙將會彎曲非常多(或非常少)

  • The fact that we live in a flat Universe appears to be a GIGANTIC, COSMIC-LEVEL COINCIDENCE.

    但我們現在仍對宇宙如此平坦的原因毫無概念

  • If the Universe had just a little bit more mass and energy, space would have curved one

    當我們探討宇宙的曲度時,我們的知識就變平了

  • way.

    <公商時間>

  • And if it had just a little bit less mass and energy, space would have curved the other

  • way.

  • But we seem to have just the right amount to make space perfectly flat as far as we

  • can tell.

  • This perfect amount is the equivalent of five hydrogen atoms per cubic meter of space, on

  • average.

  • If instead there were six hydrogen atoms per cubic meter of space on average, or four,

  • the entire Universe would have been a lot more curved or a lot less .

  • And we so far have no idea why our universe has the density that it does.

  • When it comes to the curvature of the universe, our knowledge falls flat.

WHAT IS THE SHAPE OF SPACE?

我們常會認為空間是個會有事情發生的「虛無」

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋