Placeholder Image

字幕列表 影片播放

  • Transcriber: Leslie Gauthier Reviewer: Krystian Aparta

    譯者: Lilian Chiu 審譯者: Val Zhang

  • So data and analytics are dramatically changing our everyday lives.

    資料和分析不斷為我們的 日常生活帶來重大改變。

  • Not just online,

    不只是在線上或遙遠的未來,

  • not just in some distant future,

    而是在現實世界中, 真實具體地呈現。

  • but in the physical world,

    過去 11 年,我都在 麻省理工學院當極客,

  • and in very real and tangible ways.

    在大數據實驗室裡工作,

  • I spent the past 11 years of my life as a geek at MIT,

    企圖用資料科學來研究實體世界,

  • working in big data labs

    並嘗試解決社會上的重大問題。

  • that seek to use data science to study the physical world

    大數據領域企圖運用 計算工具分析大量資料,

  • and try to solve society's great problems.

    以找出模式和趨勢。

  • The field of big data seeks to analyze massive pools of data

    資料能化身為說故事高手,

  • using computational tools to find patterns and trends.

    揭開日常事物背後所藏的故事,

  • Data can be a really extraordinary storyteller,

    或許我們原本無從知道的。

  • unveiling the hidden narratives of things in our everyday lives

    為無生命的事物說出生動的故事,

  • that we never would have seen.

    我覺得非常有吸引力。

  • I find the personal stories of inanimate things brought to life

    想先分享我在麻省理工學院 所做的兩個亮點專案,

  • to be extraordinarily compelling.

    我認為它們非常適合說明這個現象。

  • I want to highlight, first, two projects from my time at MIT

    第一個是「垃圾軌跡」,

  • that I think highlight this phenomenon really well.

    這個計畫的目標是 更了解廢棄物管理系統,

  • The first is called Trash Track,

    以回答這個問題:

  • and in this project, we sought to better understand the waste-management system,

    「當你把垃圾丟掉之後, 它會到哪裡去?」

  • to answer the question

    你的舊咖啡杯,

  • "Where does your trash go when you throw it away?"

    或者在 2000 年代初期 你帶在身上的掀蓋式手機,

  • Your old coffee cup or that flip phone

    或貝果,或今天早上的報紙——

  • that you carried around in the early 2000s,

    這些東西到哪裡去了?

  • or a bagel or this morning's paper --

    這些資料並不存在, 所以得要由我們來創造。

  • where do these things go?

    我們以視覺化的方式解答這個問題,

  • This data didn't exist, so we had to create it.

    透過在一些垃圾當中 裝上小型感測器,

  • We answered and then visualized this question

    再將它們丟到廢棄物系統中。

  • by installing small sensors into pieces of trash

    各位看到的就是這些資料。

  • and then throwing them into the waste system.

    各位看到的每一個點、每一條線,

  • And what you're seeing here is the data.

    就代表一個垃圾在西雅圖中移動,

  • Every line, every node that you see

    接著到州內的其他地方,

  • is a single piece of trash moving through the city of Seattle,

    接著到國內的其他地方,

  • and then across the state,

    隨著每週、每月過去的移動。

  • and then across the country,

    視覺化呈現這些資料十分重要, 因為應該沒有人會揣想:

  • as weeks and months go by.

    「是的,看起來沒錯。」

  • And it's important to visualize this data,

    (笑聲)

  • because none of you are, probably, sitting here thinking,

    「就應該是這樣,對吧?」

  • "Yeah, that looks right."

    因為不是。

  • (Laughter)

    (笑聲)

  • "That's working like it should, right?"

    資料所呈現的是個效率極低的系統,

  • Because, no --

    我們或許無法看見系統本身的殘缺,

  • (Laughter)

    若不是這些感測器幫我們收集資料。

  • What the data shows us is a highly inefficient system

    我要分享的第二個亮點專案,

  • whose inherent brokenness I don't think we really would have seen

    是在打造能夠潛入下水道

  • had the sensors not done the journalism for us.

    做廢水採樣的機器人。

  • A second project that I'd have to highlight

    我知道汙水的形象不佳,

  • has to do with creating robots that dive into sewers

    但它其實還蠻棒的,

  • and sample wastewater.

    因為它能告訴我們很多 關於社區健康的資訊。

  • I know that sewage kind of gets a bad rap,

    開發出這項技術的是叫做 Biobot Analytics 的集團,

  • but it's actually kind of awesome,

    他們創造出先進的技術,

  • because it can tell us an incredible amount

    將我們的下水道轉變成 現代的健康觀測台。

  • about the health of our communities.

    他們的目標是要研究 汙水中的類鴉片藥物,

  • This technology was spun out by a group call Biobot Analytics,

    以期更了解城市中的用藥狀況。

  • who's creating a cutting-edge technology

    這些資料正是關鍵所在,

  • to turn our sewers into modern-day health observatories.

    因為它們能協助城市了解 人們在哪裡使用這些藥物、

  • Their goal is to study opioids within the sewage

    如何分配資源,

  • to better understand consumption in cities.

    以及方案的長期成效。

  • And this data is key,

    同樣的,內建在這台機器中的 這項技術揭開了面紗,

  • because it really helps cities understand where people are using,

    讓我們看到一些本來 無法看到的城市狀況。

  • how to allocate resources

    所以,結果發現,如我們所見,

  • and the effectiveness of programming over time.

    大數據真的無所不在,

  • Once again, the technology that's built into this machine

    連你的廁所裡也有。

  • is pulling back the curtain

    既然我們已經談過了垃圾和汙水,

  • and showing us something about our cities that we never would have seen without it.

    咱們接著來談談……食物。

  • So it turns out, as we see,

    (笑聲)

  • that big data is really everywhere --

    一年前,我離開了麻省理工學院, 去追尋對食物的熱情,

  • even in your toilet.

    2017 年,我和先生創立了「家庭晚餐」。

  • And so now that we've talked about trash and sewage,

    我們公司的目標是為當地食物

  • let's move on ...

    及種植這些食物的人建立社群。

  • to food.

    為了達成這個目標,

  • (Laughter)

    我們用了資料分析、自動化和科技,

  • A year ago, I left MIT to pursue a passion in food,

    建造出當地農場的分散式網路,

  • and in 2017,

    並改善食物系統。

  • started a company with my husband, called Family Dinner.

    各位可以看到,

  • The goal of our company is to create community around local food

    這些多重的技術 和我們試著達成的使命,

  • and the people who grow it.

    其實和麻省理工學院 實驗室的工作相去不遠。

  • To make this happen, we're using data analytics,

    這就帶出了一個關鍵問題:

  • automation and technology

    為什麼會有人想要放棄在世界頂尖

  • to build a distributed network of local farms

    都市科學實驗室工作的職涯,

  • and to make improvements on the food system.

    開著她媽媽的 Acura 汽車 載著紅蘿蔔到處跑?

  • So what we see here

    (笑聲)

  • is that the broad techniques and the mission of what we're trying to do

    那是台好車。

  • is really not dissimilar from the work at the MIT labs.

    因為我相信,當地食物的故事

  • Which brings us to a critical question:

    需要被了解、被說出、被提升,

  • Why exactly would someone leave a very promising career

    且在許多層面上, 我想我們這種書呆子

  • at one of the top urban science labs in the world

    特別適合來說這樣的故事。

  • to drive carrots around in her mom's Acura?

    所以,我們要從何開始?起點在哪?

  • (Laughter)

    目前的國家食物系統只針對 一項指標在做最佳化:

  • It's a great car.

    企業利潤,對吧?

  • Because I believe that the story of local food

    想想這一點。

  • needs to be understood, told and elevated,

    食物公司存在背後最強的驅動力,

  • and in many ways,

    並不是要提供食物給飢餓的人,

  • I think that nerds like us are really uniquely poised to tell it.

    也不是要做出美食。

  • So where are we starting?

    是利潤。

  • What's our starting point?

    在我們食物系統的每個層級, 這都是種有害的效應。

  • The current national food system is optimized for one thing only,

    放到食物中的抗生素及殺蟲劑

  • and that's corporate profit, right?

    對我們的健康有害。

  • And think about that.

    價格壓力迫使小農場關門。

  • The most compelling reason for food companies to exist

    事實上,許多你所知道的 農場特性都已不復存在。

  • is not to feed hungry people,

    農場看起來不像農場,而像工廠。

  • it's not to make delicious-tasting food.

    到頭來,我們所吃的食物, 品質也會受到不良影響。

  • It's profit.

    工廠化農場產出的蕃茄 可能看起來像是一般的蕃茄:

  • And that has detrimental effects at all levels of our food system.

    外表是亮紅色的……

  • The antibiotics and pesticides that are being put into our food

    但當你咬下去,

  • are detrimental to our health.

    口味和質感就是讓你覺得不對勁。

  • Price pressure is forcing small farms out of business.

    我們知道,這當中最大的悲劇

  • In fact, a lot of the things that you think about farms

    可能就是這些食物 有 30~40% 被浪費掉了……

  • no longer exist.

    被丟棄。

  • Farms don't look like farms, they look like factories.

    換算出來是 16 億公噸。

  • And at the end of the day,

    我實在無法想像這樣的數字。

  • the quality of the food that we're eating really suffers, too.

    16 億公噸。

  • A factory-farm tomato may kind of look like a regular tomato:

    一年丟棄的食物就價值 1.2 兆美金。

  • bright red exterior ...

    這就是隨選隨吃、方便性,

  • But when you bite into it,

    及出問題的食物系統 所產生的代價。

  • the taste and texture just leave you wanting.

    這些浪費發生在何處?

  • And we know that perhaps the greatest tragedy in all of this

    到底哪裏浪費了?

  • is that between 30 and 40 percent of this food is just wasted ...

    我們知道在農場裡會發生,

  • thrown away.

    看起來不夠漂亮的 馬鈴薯不會被選中。

  • That is 1.6 billion tons.

    我們知道在運輸過程會發生,

  • I can't even wrap my head around that number.

    在倉庫裡會發生,在雜貨店會發生。

  • 1.6 billion tons.

    最後,在自家廚房 流理台上也會發生,

  • That's 1.2 trillion dollars a year

    當我們認定長了斑點的 褐色香蕉,看起來不好吃了。

  • in wasted food.

    那麼多浪費,那麼多心力。

  • That is the cost of on-demand eating

    食物被種植下去、

  • and convenience

    栽培、收穫、運送,

  • and the broken food system.

    然後就只是被丟掉。

  • Now, where's this waste happening?

    我們認為一定有更好的方式。

  • Where's all this waste coming from?

    我們要如何改善?

  • Well, we know that it happens in the field

    我們要如何做出更好的系統?

  • when you don't pick the sexiest-looking potatoes.

    為了辦到,

  • We know that it happens in transit,

    我們知道必須去除 食物供應鏈中的浪費。

  • at the warehouses,

    我們得要把資料送到農民手中,

  • in the grocery stores.

    讓他們做更好的預測。

  • And finally, on our own kitchen counters,

    這樣他們才能和大企業競爭。

  • when we determine that that spotty, brown banana no longer looks so yummy.

    接著,最後,

  • All that waste, all that effort.

    身為公司,我們得要重視

  • Food is planted,

    品質和口味勝過其他一切,

  • grown, harvested, shipped,

    如此,大家才會珍視 他們盤中的美味食物。

  • and then just thrown away.

    我們相信這才是比較好的系統。

  • We think that there has to be a better way.

    這才是比較好的方式。

  • And so how to we improve upon this?

    而通往更好方式的路, 是由資料鋪墊而成的。

  • How do we make a better system?

    讓我用一個關於 兩顆蕃茄的故事來說明。

  • In order to do this,

    我們依序來談。

  • we understand that we need to eliminate waste

    蕃茄本身就含有美麗的縮影,

  • in the food supply chain.

    內含關於它生命週期的一切資訊:

  • We need to get data in the hands of farmers,

    它生長在哪裡、被如何對待、

  • so that they can make better predictions.

    營養價值、

  • So they can, you know, kind of compete with the big guy.

    走了多遠才到你的盤子裡、

  • And then finally,

    碳足跡。

  • we need to prize, as a company,

    所有這些資訊,

  • quality and taste above everything,

    所有這些小章節, 都含在一顆小小的水果中。

  • so that people really value the delicious food on their plates.

    這挺讓人興奮。

  • This, we believe, is the better system.

    這是一號蕃茄。

  • This is the better way.

    你可以在全世界的三明治店、

  • And the path to that better way is paved with data.

    超級市場、速食店分店買到它。

  • To highlight all of this, I want to tell the tale of two tomatoes.

    它的背景故事又長又複雜。

  • We'll talk about them one by one.

    它喝過宛如雞尾酒般的 多種混和殺蟲劑,

  • A tomato in itself contains a beautiful snapshot

    運送了至少 1,600 英里才到達你家。

  • of everything you might want to know about the life cycle of that fruit:

    這裡的圖是綠色的,

  • where it was grown, what it was treated with,

    因為這些蕃茄在還是綠色 且像石頭一樣硬時被選中,

  • nutritional value,

    運輸途中使用氣調保鮮,

  • miles traveled to get to your plate,

    好讓它們抵達目的地時,

  • CO2 emissions along the way.

    外表看來鮮豔欲滴。

  • All of that information,

    所有那些心力,