字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 Quantum computers are cool, and I mean that in a very literal sense. 量子計算機很酷,我的意思是,在一個非常字面意義上。 In order to make use of quantum phenomena and avoid calculation errors, the most advanced 為了利用量子現象,避免計算誤差,最先進的。 versions need to be kept as near as possible to absolute zero, aka zero kelvin, aka -273.15 版本需要儘可能地保持在接近絕對零度,也就是零開爾文,也就是-273.15。 degrees celcius, aka the coldest temperature there is. 攝氏度,也就是最冷的溫度有。 Now though, researchers claim they've demonstrated “hot qubits,” which could be key to overcoming 不過現在,研究人員聲稱他們已經展示了 "熱夸父",這可能是克服的關鍵。 a major obstacle to scaling this technology up. 是擴大這一技術規模的主要障礙。 The quantum computer is built around the quantum bit, or qubit. 量子計算機是圍繞著量子位,即qubit建立的。 Like a classical bit in the computers you're used to seeing every day, a quantum bit can 就像你每天看到的電腦中的經典位一樣,量子位可以做到 be used to represent a one or a zero in logical operations. 在邏輯運算中用來表示1或0。 But unlike a classical bit, a single qubit can also be any combination of one and zero 但與經典比特不同的是,單個qubit也可以是1和0的任意組合。 simultaneously thanks to the quantum phenomenon of superposition. 由於疊加的量子現象,同時。 Qubits can also take advantage of quantum entanglement. Qubits也可以利用量子糾纏的優勢。 This allows a quantum computer composed of dozens of qubits to tackle certain problems 這使得由幾十個qubits組成的量子計算機可以處理某些問題。 in minutes, while ordinary supercomputers would take millenia. 分鐘,而普通的超級計算機則需要千年。 For quantum computers the enemy is decoherence, when qubits interact with the environment 對於量子計算機來說,敵人是退相干,當誇比特與環境相互作用時 and lose information. 並丟失資訊。 The colder and more isolated the qubit is, the less likely it is to flip to another quantum 越冷越孤立的qubit,就越不可能翻轉到另一個量子。 state when it's not supposed to. 狀態下,當它不應該。 But well-isolated qubits are also difficult to keep cold, and the more qubits a computer 但隔離良好的qubits也很難保冷,而且計算機的qubits越多 has, the more heat the system generates. 有,系統產生的熱量就越多。 When you consider the fact that quantum computers that will tackle our biggest challenges like 當你考慮到量子計算機將解決我們最大的挑戰,如 precision drug making will require millions of qubits, the problem becomes clear: we have 精確的藥物製造將需要數以百萬計的qubits,問題變得很明顯:我們有 to figure out how to keep these large quantum computers operating at an optimal temperature. 以弄清如何讓這些大型量子計算機在最佳溫度下運行。 There are two ways of approaching the problem. 解決這個問題有兩種方法。 One is to improve cooling systems. 一是完善冷卻系統。 The most sophisticated quantum computers we have now are based on superconductors and 我們現在最複雜的量子計算機是基於超導體和。 are kept cool with dilution refrigerators. 用稀釋冰箱冷藏保存。 Imagine basically a hideous steampunk chandelier and you're halfway there. 想象一下,基本上一個猙獰的蒸汽朋克吊燈,你就成功了一半。 Most that exist right now can keep fewer than 100 qubits cold enough to operate. 目前存在的大多數可以保持不到100誇比特的冷量來運行。 So scaling up a dilution refrigerator to keep millions of qubits cold would be incredibly 是以,擴大稀釋冰箱的規模,以保持數以百萬計的誇比特的冷量將是令人難以置信的。 expensive, and still may not be capable of maintaining sufficient temperatures. 昂貴,而且仍然可能無法保持足夠的溫度。 The other approach is to make qubits that can operate at warmer temperatures, and this 另一種方法是製造能在較高溫度下工作的夸父體,這種 is where two separate groups of researchers believe they've made a breakthrough. 是兩組獨立的研究人員相信他們已經取得了突破。 Rather than basing their qubits off superconductors, the scientists used nanoscale metal electrodes 科學家們並沒有把他們的夸父作為超導體的基礎,而是使用了納米級的金屬電極。 to confine electrons in silicon, in devices known as quantum dots. 將電子限制在硅中,在被稱為量子點的設備中。 This allowed them to operate at significantly hotter temperatures. 這使得它們能夠在明顯更熱的溫度下工作。 How hot, you ask? 你問有多熱? A scorching 1.5 kelvin. 炙熱的1.5開爾文。 So… not exactly flip-flops weather, but at the atomic level it's a huge difference. 所以... ... 不完全是人字拖的天氣, 但在原子水準上,這是一個巨大的差異。 That's 15 times warmer than superconductor-based qubits can operate. 這比基於超導體的qubits可以工作的溫度高15倍。 A silicon basis has a few other advantages. 硅基還有其他一些優勢。 We are already very experienced at making things out of silicon; it's the basis for 我們在用硅製造東西方面已經很有經驗了,它是我們的基礎。 all conventional computer chips, after all. 都是傳統的電腦芯片,畢竟。 So the researchers claim silicon based qubits can be manufactured with foundries we have 是以,研究人員聲稱硅基夸父可以用代工廠製造,我們有 today. 今天。 And get this: hot silicon qubits allow for the integration of conventional chips that 而得到這個:熱硅四比特允許集成傳統芯片,而這些芯片的 can control the operations of the qubit. 可以控制qubit的運行。 Normally these conventional chips would get too hot to have them next to superconducting 通常這些傳統的芯片會太熱,不能讓它們挨著超導。 qubits, meaning they would have to be kept separate with long wires connecting them. qubits,這意味著它們必須用長長的電線連接起來,保持分開。 But if the qubits can operate at higher temperatures, a silicon chip can be placed right next to 但如果誇比特能在更高的溫度下工作,硅芯片可以緊挨著放置在 them and the overall size of the computer can be greatly reduced. 它們和電腦的整體尺寸可以大大縮小。 Is this the breakthrough quantum computers need to push them from curious doohickies 這就是量子計算機需要的突破,把它們從好奇的杜撰中推了出來。 to world-changing number crunchers? 到改變世界的數字計算者? We'll only know when this two-qubit proof-of-concept is scaled up. 只有當這個兩刻鐘的概念驗證被放大後,我們才會知道。 Until then, we'll keep tabs on all the other quantum computing breakthroughs until one 在那之前,我們將繼續關注所有其他量子計算的突破,直到有一個。 of them finally establishes the quantum age. 其中最終確立了量子時代。 Another group of researchers recently discovered a more precise way of controlling qubits in 另一組研究人員最近發現了一種更精確的方法來控制Qubits在 silicon, all it took was a series of fortunate accidents. 硅,所需要的只是一系列幸運的意外。 Check out my other video on that story here. 在這裡查看我的另一個關於這個故事的視頻。 If you had a quantum computer, what would you use it for? 如果你有一臺量子計算機,你會用它做什麼? Let us know in the comments, be sure to subscribe, and I'll see you next time on Seeker! 請在評論中告訴我們,一定要訂閱,我們下期《求是》見!
B2 中高級 中文 量子 計算機 溫度 芯片 製造 電腦 熱 "Qubits破解量子計算重大挑戰 (‘Hot’ Qubits Crack a Major Quantum Computing Challenge) 7 1 Summer 發佈於 2020 年 10 月 22 日 更多分享 分享 收藏 回報 影片單字