字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 What do galaxies, cloud formations, your nervous system, 星系、雲層、你的神經系統是什麼。 mountain ranges and coastlines all have in common? 山脈和海岸線都有共同之處? They all contain never ending patterns known as fractals. 它們都包含著永無止境的模式,即分形。 A classic example of a fractal in nature is broccoli - 自然界中分形的一個典型例子是西蘭花------。 in that the whole stalk is a similar version of one of its branches. 以致於整個莖是其一個分支的相似版本。 So cut off one piece 那就切掉一塊 and you're left with a smaller version of the entire broccoli. 而你留下的是整個西蘭花的小版本。 Snowflakes are another example. 雪花是另一個例子。 It's often said that no two snowflakes are ever the same 人們常說,沒有兩片雪花是一樣的。 and fractals offer a fascinating explanation 和分形提供了一個迷人的解釋 as to why nature works in this way - 至於為什麼大自然會這樣運作 why nature continuously creates new, self-replicating 為什麼自然界不斷創造新的,自我複製的 yet unique structures and how the smallest things in existence 而獨特的結構,以及最小的事物是如何存在的。 are necessary components of the greater whole. 是大整體的必要組成部分。 The term fractal was coined by Benoit Mandelbrot 分形一詞是由Benoit Mandelbrot創造的。 who was working at computer giant IBM in 1980. 1980年在電腦巨頭IBM工作的他。 Mandlebrot had been fascinated by discoveries of mathematicians 曼德勒布羅特一直被數學家的發現所吸引。 from the early 19th Century 十九世紀初 who were attempting to define their understanding of what a curve is. 誰在試圖定義他們對什麼是曲線的理解。 Experiments such as Georg Cantor's discovery 喬治-康托爾的發現等實驗。 that a single line could be divided forever 一脈相承 and Helge von Koch's triangle - 和海爾格-馮-科赫的三角形--。 a shape that has an infinite perimeter but a finite area - 周長無限而面積有限的形狀------。 resulted in the term 'monsters'. 導致了 "怪物 "一詞。 Mandelbrot used the modern computing powers developed by IBM 曼德爾布羅特利用IBM公司開發的現代計算能力。 to run these monster equations millions of times over. 來運行這些怪物方程數百萬次。 This process led him to a breakthrough equation 這個過程中,他得出了一個突破性的方程。 combining the patterns found in previous monsters 結合以前的怪獸的模式 resulting in his own set of numbers. 導致他自己的一組數字。 This would become known as the Mandelbrot set - 這將被稱為曼德爾布羅特集------。 an infinite geometrical visualisation of a fractal. 分形的無限幾何可視化。 One of the most amazing things about the Mandelbrot set 曼德爾布羅特套路最神奇的地方之一是 is that theoretically, if left by itself, 是,理論上,如果離開了自己。 would continue to create infinitely new patterns 將繼續創造無限的新模式 from the original structure 原結構 proving that something could be magnified forever. 證明某件事情可以永遠放大。 Fractal geometry is currently applied in many fields. 分形幾何學目前在很多領域都有應用。 For example, research into climate change 例如,對氣候變化的研究 and the trajectory of dangerous meteorites, 和危險隕石的軌跡。 helping with cancer research 助力癌症研究 by helping to identify the growth of mutated cells. 通過幫助識別突變細胞的生長。 It's even believed by some that the universe itself may be a fractal 甚至有人認為,宇宙本身可能是一個分形體 and as you zoomed in 而當你放大後 you would discover it's made up of billions of galaxies. 你會發現它是由數十億個星系組成的。 Inside of those galaxies, you would find trillions of stars 在這些星系中,你會發現數萬億顆恆星。 and billions of solar systems and planets. 以及數十億個太陽系和行星。 And on one of those planets you would find Earth. 而在其中一個星球上,你會發現地球。 On Earth you would find continents, cities and a human. 在地球上你會發現大陸、城市和人類。 And inside of that human you would find a brain 而在那個人的身體裡,你會發現一個大腦。 made of millions of cells 細胞組成 in which you would find trillions of synapses firing away. 在其中你會發現數萬億的突觸在發射。 And inside of those you would find DNA 而在這些裡面你會發現DNA Inside DNA you would find atoms, electrons, protons, neutrons. 在DNA裡面你會發現原子、電子、質子、中子。 Deeper still you would find quarks, neutrinos and so on 再深一點,你會發現夸克,中微子等等。 and then, just maybe, continuously deeper into infinity. 然後,只是也許,不斷深入到無限。 Some believe that, due to their highly complex and mysterious nature, 有人認為,由於其高度複雜和神祕。 the greatest use of fractals is yet to be discovered. 分形的最大用途還沒有被發現。 Thanks for watching. 謝謝你的觀看。 Don't forget to subscribe and click the bell to receive notifications for new videos. 不要忘了訂閱並點擊鈴鐺以接收新視頻的通知。 See you again soon! 再見
B2 中高級 中文 分形 發現 無限 星系 方程 雪花 分形如何幫助你理解宇宙|BBC創意頻道 (How fractals can help you understand the universe | BBC Ideas) 92 2 Summer 發佈於 2020 年 09 月 18 日 更多分享 分享 收藏 回報 影片單字