B1 中級 5 分類 收藏
Why can't we solve these problems?
We know what they are.
Something always seems to stop us.
Why I remember March the 15th 2000 The B 15 iceberg broke off the Ross Ice Shelf in the newspaper.
It said it was all part of a normal process a little bit further on.
In the article, it said, a loss that would normally take the ice shelf 50 to 100 years to replace that same word.
Normal had two different, almost opposite meanings.
If we walk into the B 15 iceberg when we leave here today, we're going to bump into something 1000 feet tall, 76 miles long, 17 miles wide, and it's gonna weigh two gigatons.
I'm sorry, there's nothing normal about this.
And yet I think it's this perspective of us as humans to look at our world through the lens of normal is one of the forces that stops us developing real solutions.
Only 90 days after this, arguably the greatest discovery of the last century occurred.
It was the sequencing for the first time of the human genome.
This is the code that's in every single one of our 50 trillion cells that makes us who we are and what we are.
And if we just take one cell's worth of this code and unwind it, it's a meter long.
Two nanometers thick, two nanometers is 20 atoms in thickness.
And I wondered, what if the answer to some of our biggest problems could be found in the smallest of places where the difference between what is valuable and what is worthless is merely the addition or subtraction of a few atoms?
And what if we could get exquisite control over the essence of energy?
The electron?
So I started to go around the world finding the best and brightest scientists I could at universities whose collective discoveries have the chance to take us there.
And we formed a company to build on their extraordinary ideas.
6.5 years later, 180 researchers, they have some amazing developments in the lab.
Let me show you three of those today such that we can stop burning up our planet and instead we can generate only energy.
We need right where we are cleanly, safely and cheaply.
Think of the space that we spend most of our time, tremendous amount of energy is coming at us from the sun.
We like the light that comes into the room, but in the middle of summer, all that heat is coming into the room that we're trying to keep cool in winter.
The opposite is happening.
We're trying to heat up the space that we're in on a law that is trying to get out through the window.
Would it be really great if the window could flick back the heat into the room if we needed it or flick it away before it came in?
One of the materials that could do this is a remarkable material, carbon that has changed its form in this incredibly beautiful reaction, where graphite is blasted by a vapor, and when the Vape arised carbon condenses, it condenses back into a different form.
Chicken wire rolled up, but this chicken wire carbon, called a carbon nanotube, is 100,000 times smaller than the wits of one of your hairs.
It's 1000 times more conductive than copper.
How is that possible?
One other things about working at the nano scale.
These things look and act very differently.
You think of carbon is black carbon at the nanoscale is actually transparent and flexible.
And when it's in this form, if I combine it with a polymer and a fix it to your window when it's in its colored state, it will reflect away all heat and light on.
When it's in its bleached state, it will let all the light and heat through, and any combination in between to change its state, by the way, takes two volts from millisecond pulse.
Once you've changed its state, it stays there until they change its state again.
As we're working on this incredible discovery.
University of Florida, we were told to go down the corridor to visit another scientist, and he was working on a pretty incredible thing.
Imagine if we didn't have to rely on artificial lighting to get round at night.
I would have to see at night, right?
This lets you do it.
It's a natter material to nano materials, the detector and an imager.
The total width of it this 600 times, and it takes all the infrared available at night.
The space of two small films is enabling you to play an image which you can see through.
I'm gonna show two.
Ted stirs the first time this operating.
Firstly, I'm gonna show you the transparency.
Transparency is key.
It's a film that you could look through and then I'm gonna show Turn the lights out and you can see off a timing film.
Incredible clarity.
As we were working on this, it dawned on us.
This is taking infrared radiation wavelength, converting it into electrons.
What if we combined it with this?
Suddenly you've converted energy into an electron on a plastic surface that you can stick on your window.
But because it's flexible, it could be on any surface whatsoever.
The power plant of tomorrow is no power plant.
We talked about generating and using.
We want to talk about storing energy.
And unfortunately, the best thing we've got going is something that was developed in France 100 50 years ago.
The lead acid battery in terms of dollars per what stored.
It's simply the best knowing that we're not gonna put 50 of these in our basements to store our power.
We went to a group of University of Texas at Dallas and we gave them this diagram.
It was in actually a diner outside Dallas Fort worth Airport.
We said, Could you build this?
And these scientists, instead of laughing at us, said Yeah, and what they built was E books E boxes testing new nanomaterials to park an electron on the outside.
Hold it until you need it and then be able to release it and pass it off.
Being able to do that means that I can generate energy cleanly, efficiently and cheaply.
Right where I am, it's my energy.
And if I don't need it, I can convert it back up on the window to energy light and beam it line of sight to your place.
And for that, I do not need an electric grid between us.
The grid off tomorrow is no grid and energy.
Clean, efficient energy will one day be free.
If you do this, you get the last puzzle piece, which is water.
Each of us every day need just eight glasses of this because we're human.
When we run out of water, as we are in some parts of the world and soon to be in other parts of the world, we're gonna have to get this from the sea, and that's going to require us to build desalination plants.
$19 trillion is what we're gonna have to spend.
He's also require tremendous amounts of energy.
In fact, it's going to require twice the world's supply of oil to run the pumps to generate the water was simply not going to do that.
But in a world where energy is freed and transmittable easily and cheaply, we can take any water wherever we are and turn it into whatever we need.
I'm glad to be working with incredibly brilliant and kind scientists, no kinder than many of the people in the world.
But they have a magic look at the world, and I'm glad to see their discoveries coming out of the lab and into the world.
It's been a long time in coming for me.
18 years ago, I saw a photograph in the paper.
He was taken by Kevin Carter, who went to the Sudan to document their famine there.
I've carried this photograph with me every day since then.
It's a picture of a little go, dying of thirst by any standard.
This is wrong.
It's just wrong.
We can do better than this.
We should do better than this.
And whenever I go around to somebody who says, You know what?
You're working on something that's too difficult.
It'll never happen.
You don't have enough money, you don't have enough time.
There's something much more interesting around the corner.
I say Try saying that to her.
That's what I say in my mind.
And I just say thank you and I go onto the next one.
This is why we have to solve our problems.
And I know the answer as to how is to be able to get exquisite control over a building block of nature, stuff of life.
The simple electron.
Thank you.


Freeing energy from the grid - Justin Hall-Tipping

5 分類 收藏
林宜悉 發佈於 2020 年 7 月 3 日
  1. 1. 單字查詢


  2. 2. 單句重複播放


  3. 3. 使用快速鍵


  4. 4. 關閉語言字幕


  5. 5. 內嵌播放器


  6. 6. 展開播放器


  1. 英文聽力測驗


  1. 點擊展開筆記本讓你看的更舒服

  1. UrbanDictionary 俚語字典整合查詢。一般字典查詢不到你滿意的解譯,不妨使用「俚語字典」,或許會讓你有滿意的答案喔