Placeholder Image

字幕列表 影片播放

  • Last video I left you with a puzzle. The setup involves two sliding blocks in a perfectly

    在上一支影片當中,我提出了一個問題 有兩個滑動的方塊

  • idealized world where there's no friction, and all collisions are perfectly elastic,

    在沒有摩擦力,且所有的碰撞 皆為完全彈性碰撞的理想情況下

  • meaning no energy is lost. One block is sent towards another smaller one, which starts

    也就是沒有任何的能量散失 其中一個大方塊撞向另外一個維持不動的小方塊

  • off stationary, and there's a wall behind it so that the small one bounces back and

    並且左側有面牆 導致小方塊會不斷地反彈回去

  • forth until it redirects the big block's momentum enough to outpace it away from the

    直到小方塊的速度追不到大方塊

  • wall.

    如果大方塊的質量比小方塊還要大100的某次方倍時

  • If that first block has a mass which is some power of 100 times the mass of the second,

    例如1百萬倍(100^3) 會有個非常驚人的事實

  • for example 1,000,000 times as much, an insanely surprising fact popped out: The total number

    碰撞的總數,包含了小方塊撞到牆壁的次數

  • of collisions, including those between the second mass and the wall, has the same starting

    會跟圓周率 π 的前幾位數字相同 在這個例子中,發生了3,141次碰撞

  • digits as pi. In this example, that's 3,141 collisions.

    如果大方塊的質量是小方塊的1萬億倍(100^6) 總共會有3,141,592次的碰撞

  • If it was one trillion times the mass, it would take 3,141,592 collisions before this

    幾乎所有的碰撞都在一個爆發中發生

  • happens, almost all of which happen in one huge burst.

    提到了爆發,在上支影片發布後

  • Speaking of unexpected bursts, in the short time since that video lots of people have

    在很短的時間內,有非常多的網友們 分享了他的解法、嘗試和模擬,我覺得很好

  • shared solutions, attempts, and simulations, which is awesome. See the description for

    (點開完整訊息來看我喜歡的)

  • some of my favorites. So why does this happen?! Why should pi show up in such an unexpected

    所以為什麼會這樣? 為什麼 π 會在這個意想不到的地方出現?

  • place, and in such an unexpected manner?

    並以這種意想不到的方式出現?

  • First and foremost this is a lesson about using a phase space, also commonly called

    首先,我們要利用相空間(又被稱為位形空間) 來解決這個問題

  • a configuration space, to solve problems. So rest assured that you're not just learning

    所以請放心,你不僅僅是在學 π 的深度算法

  • about an esoteric algorithm for pi, the tactic here is core to many other fields.

    這個手法是其他許多領域的核心 是一個適合牢牢記住的好用工具

  • To start, when one block hits another, how do you figure out how the velocity of each

    一開始,當第一個方塊撞到另外一個方塊時 你要怎麼知道它們碰撞後的速度分別是多少?

  • one after the collision? The key is to use the conservation of energy, and the conservation

    關鍵是要利用「能量守恆」以及「動量守恆」

  • of momentum. Let's call their masses m1 and m2, and their velocities v1 and v2, which

    我們先假設兩個方塊的質量分別是m1和m2 而速度分別是v1及v2

  • will be variables changing throughout the process.

    v1和v2會是碰撞過程中的變數

  • At any given moment, the total kinetic energy is (½)m1(v1)^2 + (½)m2(v2)^2. Even though

    無論什麼時候,動能總和都會是 (½)m1(v1)^2 + (½)m2(v2)^2

  • v1 and v2 will change as the blocks get bumped around, the value of this expression must

    所以說,雖然v1和v2會因為方塊的碰撞而改變 但是這個式子的值一定會是一個常數

  • remain constant. The total momentum of the two blocks is m1*v1 + m2*v2. This also remains

    兩個方塊的動量總和是 m1*v1 + m2*v2

  • constant when the blocks hit each other, but it can change as the second block bounces

    當兩個方塊互撞時,這個式子的值也會是一個定值

  • off the wall. In reality, that second block would transfer its momentum to the wall during

    但當小方塊撞到牆壁的時候,這個式子的值就會改變

  • this collision. Again we're being idealistic, say thinking of the wall as having infinite

    在現實中,碰撞到牆壁時 小方塊會將自己的動量傳給牆壁

  • mass, so such a momentum transfer won't actually move the wall.

    但再重申一次,我們是理想主義者 假設牆壁有著無窮大的質量

  • So we've got two equations and two unknowns. To put these to use, try drawing a picture

    因此當動量轉移給牆壁時 並不會讓牆壁有所移動

  • to represent the equations.

    我們目前有兩個方程式和兩個未知數

  • You might start by focusing on this energy equation. Since v1 and v2 are changing, maybe

    要解聯立的話,可以畫兩個方程式的座標圖

  • you think to represent this equation on a coordinate plane where the x-coordinate represents

    你或許會先從能量守恆的式子開始下手 因為v1和v2是變數

  • v1, and the y-coordinate represents v2. So individual points on this plane encode the

    所以在座標平面上表示該式 其中x座標為v1,y座標代表v2

  • pair of velocities of our block. In that case, the energy equation represents an ellipse,

    因此在這個座標上的各點 代表了兩個方塊的速度

  • where each point on this ellipse gives you a pair of velocities, and all points of this

    在這個情況下,能量守恆的式子會是一個橢圓

  • ellipse correspond to the same total kinetic energy.

    在橢圓上每個點的座標都代表一對速度

  • In fact, let's actually change our coordinates a little to make this a perfect circle, since

    而所有的點都有著相同的總動能

  • we know we're on a hunt for pi. Instead of having the x-coordinate represent v1, let

    事實上,我們把座標稍微改變一點 讓橢圓變成一個圓

  • it be sqrt(m1)*v1, which for the example shown stretches our figure in the x-direction by

    因為我們要知道 π 是從哪裡來的

  • sqrt(10). Likewise, have the y-coordinate represent sqrt(m2)*v2. That way, when you

    因此不要使x座標為v1 而是(√m1)*v1

  • look at this conservation of energy equation, it's saying ½(x^2 + y^2) = (some constant),

    在這個例子中 會在x方向將圖形拉長了√10倍

  • which is the equation for a circle. Which specific circle depends on the total energy.

    同理,使y座標為(√m2)*v2

  • At the beginning, when the first block is sliding to the left and the second one is

    這樣的話,能量守恆的式子就會變成 ½(x^2 + y^2) 等於一個常數

  • stationary, we are at this leftmost point on the circle, where the x-coordinate is negative

    也就是圓的方程式 圓的大小取決於總能量,不過在這個問題中並沒有差別

  • and the y-coordinate is 0. What about after the collision, how do we know what happens?

    一開始,大方塊向左滑動,而小方塊保持靜止

  • Conservation of energy tells us we must jump to some other point on this circle, but which

    此時位於圓的最左側的點

  • one?

    x的座標是負值 y的座標為0

  • Well, use the conservation of momentum! This tells us that before and after a collision,

    那在碰撞之後呢? 我們要怎麼知道發生了什麼事?

  • the value m1*v1 + m2*v2 must stay constant. In our rescaled coordinates, that looks like

    能量守恆告訴了我們每個點只能在這個圓上移動 但是是在哪一點?

  • saying sqrt(m1)*x + sqrt(m2)*y = (some constant), which is the equation for a line with slope

    此時就要用動量守恆了

  • -sqrt(m1/m2). Which specific line depends on what that constant momentum is. But we

    動量守恆告訴我們 m1*v1 + m2*v2 的值一定等於一個常數

  • know it must pass through our first point, which locks us into place.

    在我們重新調整的座標中 這個式子會變成 (√m1)x + (√m2)y 等於一個常數

  • Just to be clear what all this is saying: All other pairs of velocities which would

    也就是直線的方程式 一條斜率為 -√(m1/m2) 的直線

  • give the same momentum live on this line, just as all other pairs of velocities which

    你或許會問那條線的確切位置在哪 這要取決於該方程式的常數決定

  • give the same energy live on our circle. So notice, this gives us one and only one other

    但確定的是,它一定會經過第一個點 所以只剩下一種可能

  • point that we could jump to. And it should make sense that it's something where the

    先將這一切給弄清楚,在這條線上, 每對速度都有著相同的總動量

  • x-coordinate gets a little less negative and the y-coordinate is negative, since that corresponds

    就像是在這個圓上 每對速度都有著相同的總能量

  • to our big block slowing down a little while the little block zooms off towards the wall.

    因此請注意,這裡給了我們一個 也是唯一一個可以跳過去的點

  • When the second block bounces off the wall, it's speed stays the same, but will go from

    應該滿有道理的,因為x座標的值變大了一些 而y座標的值變成了負值

  • negative to positive. In the diagram, this corresponds to reflecting about the x-axis,

    對應了大方塊速度降低了一些 而小方塊往牆壁方向前進

  • since the y-coordinate gets multiplied by -1. Then again, the next collision corresponds

    從這裡開始,看看事情如何發展還滿有趣的 當小方塊撞到牆壁反彈的時候

  • to a jump along a line of slope -sqrt(m1 / m2), since staying on such a line is what conservation

    它的速度量值會維持一樣 但會由負值變成正值

  • of momentum looks like in this diagram.

    在座標圖中,就像是對x軸鏡射

  • This gives us a very satisfying picture of how we hop around on our picture, where you

    因為y座標的值乘了(-1)

  • keep going until the velocity of that smaller block is both positive, and smaller than the

    接下來,下一次的碰撞對應了 沿著斜率為 -√(m1/m2) 的直線的點跳躍

  • velocity of the big one, meaning they'll never touch again. That corresponds to this

    因為在該線上移動就是動量守恆的式子在圖形中的模樣

  • region of the diagram, so in our process, we keep bouncing until we land in that region.

    從這裡,你可以藉由方塊的碰撞情形 將圓裡剩餘的部分給填滿

  • What we've drawn here is called a “phase diagram”, which is a simple but powerful

    持續這個步驟,直到小方塊的速度是正值 並且小於大方塊的速度

  • idea in math where you encode the state of some system, in this case the velocities of

    也就是它們不會再發生碰撞

  • our sliding blocks, as a single point in some abstract space. What's powerful here is

    這對應到了座標圖中,右上角這個三角形的區域 因此在過程中,點會不斷地跳躍,直到落到該區域內

  • that it turns questions about dynamics into questions about geometry. In this case, the

    我們畫的這張圖稱做「相圖」 它是一個簡單但強大的數學概念

  • dynamical idea of all pairs of velocities that conserve energy corresponds to the geometric

    你可以將某個系統的狀態給繪製出來 在這個例子中,也就是滑動方塊的速度

  • object of a circle, and counting the total number of collisions turns into counting the

    並在一個抽象的空間中以點的形式出現

  • number of hops along these lines, alternating between vertical and diagonal.

    強大的地方在於,它將動力學的問題 變成了幾何的問題

  • Specifically, why is it that when the mass ratio is a power of 100, that number of steps

    在這個情況下,在動力學中所有可能的每對速度 都必須維持能量守恆,對應到了在幾何中的圓

  • shows the digits of pi?

    計算方塊碰撞的次數變成了計算 點沿著這些線的跳躍次數

  • Well, if you stare at this picture, maybe, just maybe, you might notice that all the

    這些線在鉛直與斜線兩者交替

  • arc-lengths between the points of this circle seem to be about the same. It's not immediately

    不過問題還是沒有解答 為什麼當質量比值為100時

  • obvious that this should be true, but if it is, it means that computing the value of that

    總碰撞次數會有 π 的數字?

  • one arc length should be enough to figure out how many collisions it takes to get around

    如果你看著這張圖,或許,只是或許

  • the circle to the end zone.

    你會發現在圓上每個點跟點之間的圓弧的長度 都會是一樣的

  • The key here is to use the ever-helpful inscribed angle theorem, which says that whenever you

    雖然這件事情並非顯而易見的 但這件事情代表了

  • form an angle using three points on a circle P1, P2 and P3 like this, it will be exactly

    只要計算了一個圓弧的長度 就可以知道需要幾次的碰撞才能夠到達結束區域

  • half the angle formed by P1, the circle's center, and P3. P2 can be anywhere on this

    這裡的關鍵就是利用永遠有用的「圓周角定理」

  • circle, except in that arc between P1 and P3, and this fact will be true.

    圓周角定理表示,當你用三個在圓上的點 P1、P2、P3形成一個角度時

  • So now look at our phase space, and focus specifically on three points like these. Remember

    該角度剛好會是由 P1、圓心、P3 所形成的角度

  • this first vertical hop corresponds to the small block bouncing off the wall, and the

    P2 可以在圓上任何一點 除了 P1 與 P3 之間

  • second hop along a slope of -sqrt(m1 / m2) corresponds to a momentum-conserving block

    這個定理永遠都會是正確的

  • collision. Let's call the angle between this momentum line and the verticaltheta”.

    現在回到我們的相空間 並專注於這三個點

  • Then using the inscribed angle theorem, the arc length between these bottom two points,

    第一個鉛直跳躍代表了小方塊撞到牆壁反彈

  • measured in radians, will be 2*theta. Notice, since this momentum line has the same slope

    第二個沿著斜率為 -√(m1/m2) 的斜線的跳躍 代表了方塊碰撞時的動量守恆

  • for all of those jumps from the top of the circle to the bottom, the same reasoning means

    我們把動量守恆線和鉛直線之間所形成的角度稱做 θ

  • all of these arcs must also be 2*theta.

    現在你大概發現了 利用圓周角定理

  • So for each hop, if we drop down a new arc, like so, then after each collision we cover

    下方兩點所形成的圓弧的長度(單位為弧度) 將會是 2θ

  • another 2*theta radians of the circle. We stop once we're in this endzone, corresponding

    很重要的是,所有從圓上方跳到圓底部的跳躍 都沿著相同斜率的動量守恆線

  • to both blocks moving to the right, with the smaller one going slower. But you can also

    因此,這些圓弧的長度都會是 2θ

  • think of this as stopping at the point when adding another arc of 2*theta would overlap

    所以,對於每個跳躍 如果我們放了一個新的弧,相這樣

  • with a previous one.

    那麼在每次的碰撞後,我們在圓上 再放另外一個長 2θ 的圓弧

  • In other words, how many times do you have to add 2*theta to itself before it covers

    直到觸碰到停止區域就停止,別忘了停止區域代表 兩個方塊都向右,但小方塊速度較小

  • more than 2*pi radians? The answer to this is the same as the number of collisions between

    不過你也可以把它想像成:再加一個 長 2θ 的圓弧會導致它覆蓋到另外一個圓弧時的停止點

  • our blocks.

    換句話說,在覆蓋超過整個圓 2π 前 你可以加多少個 2θ ?

  • Or, simplifying things a little, what's the largest integer multiple of theta that

    這個問題的答案與方塊的碰撞次數一樣

  • doesn't surpass pi?

    更簡潔的說,在不大於 π 的情況下 θ 的最大整數倍是多少?

  • For example, if theta was 0.01 radians, then multiplying by 314 would put you a little

    舉個例子,如果 θ = 0.01 弧度 那麼將它乘以314會使之小於 π

  • less than pi, but multiplying by 315 would bring you over that value. So the answer would

    但乘以315,則會超過 π

  • be 314, meaning if our mass ratio were one such that the angle theta in our diagram was

    所以答案會是314 也就是如果有某個質量比值使得圖中的 θ = 0.01

  • 0.01, the blocks would collide 314 times.

    那麼方塊的碰撞次數將會是314次

  • In fact, let's go ahead and compute theta, say when the mass ratio is 100 : 1. Remember

    現在,你知道該怎麼做了 那麼我們現在來真正的計算 θ 的值

  • that the rise-over-run slope of this constant momentum line is -sqrt(m1/m2), which in this

    假設方塊的質量比為 100:1

  • example is -10. That would mean the tangent of this angle theta, opposite over adjacent,

    別忘了,這條動量守恆線的上升量除以橫移量的 斜率的值為 -√(m1/m2)

  • is that run over the negative rise, which is 1/10 in this example. So theta = arctan(1/10).

    在這個例子中,該值為 -10

  • In general, it'll be the inverse tangent of the square root of the small mass over

    這代表著 tan(θ) 也就是對邊除以鄰邊 將會是上升量除以負的橫移量

  • the square root of the big mass.

    在這例子中,該值為1/10

  • If you go an plug these into a calculator, you'll notice that the arctan of each such

    所以 θ = arctan(1/10)

  • small value is quite close to the value itself. For example, arctan(1/100), corresponding

    更明確的說, θ 會是 小質量除以大質量的平方根的反正切值(arctan)

  • to a big mass of 10,000 kilograms, is extremely close to 0.01.

    如果你用計算機輸入這些數值 你會發現這些反正切值會跟質量比值的平方根很接近

  • In fact, it's so close that for the sake of our central question, it might as well

    舉個例子, arctan(1/100) 對應到了大質量為 10,000 kg

  • be 0.01. That is, analogous to what we saw a moment ago, adding this to itself 314 times

    該值會非常接近 0.01

  • won't surpass pi, but the 315th time would. Remember, unraveling why we're doing this,

    事實上,為了解開我們最主要的問題 可以將它看成 0.01

  • that's a way of counting how many of our jumps on the phase diagram gets to the end

    也就是說,就像剛剛看到的那樣 把它加到314次

  • zone, which is a way of counting how many times the blocks collide until they're sailing

    該值還是不會超過 π 但如果加到315次,則會大於 π

  • off never to touch again. So that's why a mass ratio of 10,000 gives 314 collisions.

    別忘了,我們現在正在做的 是在計算於相圖中,在結束區域前發生了多少次跳躍

  • Likewise a mass ratio of 1,000,000 to 1 will give an angle of arctan(1/1,000) in our diagram.

    也就是在計算方塊發生了多少次的碰撞

  • This is extremely close to 0.001. And again, if we ask about the largest integer multiple

    我的朋友,這就是為什麼當質量比值為10,000時 會發生314次的碰撞

  • of this theta that doesn't surpass pi, it's the same as it would be for the precise value

    同樣方法,當質量比為 1,000,000:1 時 角度 θ 的值會是 arctan(1/1,000)

  • of 0.001: 3,141. These are the first four digits of pi, because that is by definition

    這個值會非常的接近 0.001

  • what the digits of pi mean. This explains why with a mass ratio of 1,000,000, the number

    一樣,我們要找出在不大於 π 的情況下 角度 θ 的最大整數倍是多少

  • of collisions is 3,141.

    而該角度 θ 可以視為 0.001

  • All this relies on the hope that the arctan of a small value is sufficiently close to

    最大整數倍會是 3,141 也就是定義上 π 的前四個數字

  • the value itself, which is another way of saying that the tangent of a small value is

    這解釋了為什麼當質量比值是1,000,000時 碰撞次數是 3,141 次

  • approximately that value. Intuitively, there's a nice reason this is true. Looking at a unit

    你或許會發現,這一切都是因為小數值的反正切值 會跟它本身非常接近

  • circle, the tangent of any given angle is the height of this little triangle divided

    也可以講成,小數值的正切值(tan) 大約等於它本身

  • by its width. When that angle is really small, the width is basically 1, and the height is

    有個非常直觀的原因來解釋為何會這樣

  • basically the same as the arc length along the circle, which by definition is theta.

    如果有個單位圓 某個角度的正切值會等於這個小三角形的高除以底

  • To be more precise about it, the Taylor series expansion of tan(theta) shows that this approximation

    當角度非常小的時候 底的長度會是 1 ,也就是圓的半徑

  • will only have a cubic error term. So for example, tan(1/100) differs from 1/100 by

    而高的長度基本上會是圓弧的弧長 根據定義該弧長等於 θ

  • something on the order of 1/1,000,000. So even if we consider 314 steps with this angle,

    更精確點的話 tan(θ) 的泰勒級數展開式當中

  • the error between the actual value of arctan(1/100) and the approximation of 0.01 won't have

    只會有立方項的誤差項 舉個例子來說

  • a chance to accumulate enough to be significant.

    tan(1/100) 與 1/100 只差了約 1/1,000,000 所以當我們在算該角度的跳躍數時

  • So, let's zoom out and sum up: When blocks collide, you can figure out how their velocities

    實際值 arctan(1/100) 與大約值 1/100 之間的誤差 不會大到影響該最大整數倍

  • change by slicing a line through a circle in a velocity phase diagram, each curve representing

    好的,先總結一下 當方塊碰撞的時候

  • a conservation law. Most notably, the conservation of energy plants the circular seed that ultimately

    你可以在速度的相圖中的圓上畫一條直線 來了解碰撞後的速度情形

  • blossoms into the pi we find in the final count.

    而這個圓和直線都代表著不同的守恆定律

  • Specifically, due to some inscribed angle geometry, the points we hit of this circle

    特別要注意的是,能量守恆定律的圓

  • are spaced out evenly, separated by the angle we were calling 2*theta. This lets us rephrase

    是為什麼最後會有 π 的主要原因

  • the question of counting collisions as instead asking how many times we must add 2*theta

    明確來說,由於圓周角定理 圓上的每個點都將圓平均的分割

  • to itself before it surpasses 2pi.

    都以 2θ 的角度分隔開

  • If theta looks like 0.001, the answer to that question has the same first digits as pi.

    因為這點,我們的問題從計算碰撞次數

  • And when the mass ratio is some power of 100, because arctan(x) is so well approximated

    變成了我們可以加幾次 2θ 而都不會超過 2π

  • by x for small values, theta is sufficiently close to this value to give the same final

    如果 θ 是 0.001 則該問題的解答會與 π 的前4位數字相同

  • count. Setup for next video

    如果當質量的比值是100的某次方時 由於 x 極小的情況下 arctan(x) 會約等於 x

  • I'll emphasizes again what this phase space allowed us to do, because this is a lesson

    因此 θ 會大約等於 arctan(θ) 所以答案不會影響

  • useful for all sorts of math, like differential equations, chaos theory, and other flavors

    我要再次強調相空間可以讓我們做到哪些事情

  • of dynamics: By representing the relevant state of your system as a single point in

    因為像我剛說的,相空間在各種的數學領域中都用的到 像是微分方程、混沌理論,以及其他種類的動力學

  • an abstract space, it lets you translate problems of dynamics into problems of geometry.

    它將一個系統中的相關狀態轉化在抽象空間成單一的點 讓問題從動力學問題變成了幾何學問題

  • I repeat myself because I don't want you to come away just remembering a neat puzzle

    我再重複一次是因為我不希望你離開時,只記得 「為什麼 π 會出現在令人意想不到的地方」的美麗題目

  • where pi shows up unexpectedly, I want you to think of this surprise appearance as a

    我希望你也不要忘記 這道題目背後更深層的關係

  • distilled remnant of the deeper relationship at play.

    如果這個解答讓你很滿意的話 那就不應該了,因為還有另外一種解法

  • And if this solution leaves you feeling satisfied, it shouldn't. Because there is another perspective,

    比這個解法還要更聰明、更漂亮 Galperin 在他的原始論文中

  • more clever and pretty than this one, due to Galperin in the original paper on this

    提到了要我們在「方塊的運動情形」 與「光束在兩個鏡子間的反射情況」兩者做比較

  • phenomenon, which invites us to draw a striking parallel between the dynamics of these blocks,

    相信我,我已經省略很多了

  • and that of a beam of light bouncing between two mirrors. Trust me, I've saved the best

    所以希望能在下一個影片再次看到你

  • for last on this topic, so I hope to see you again next video.

Last video I left you with a puzzle. The setup involves two sliding blocks in a perfectly

在上一支影片當中,我提出了一個問題 有兩個滑動的方塊

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋