Placeholder Image

字幕列表 影片播放

  • Pick a card, any card.

    挑選一張牌,任何一張都可以。

  • Actually, just pick up all of them and take a look.

    事實上,只需將所有牌拿起來看看,

  • This standard 52-card deck has been used for centuries.

    這標準的 52 張卡片已經使用了好幾個世紀。

  • Everyday, thousands just like it

    每天都有成千上萬的人們,

  • are shuffled in casinos all over the world,

    在世界各地的賭場中洗牌。

  • the order rearranged each time.

    每次所有牌都會重新排序。

  • And yet, every time you pick up a well-shuffled deck

    每次你拿起剛洗好的牌,

  • like this one,

    像這個,

  • you are almost certainly holding

    你肯定會拿著,

  • an arrangement of cards

    在歷史上

  • that has never before existed in all of history.

    從沒重複過的一組牌。

  • How can this be?

    怎麼會這樣呢?

  • The answer lies in how many different arrangements

    這個答案在於 52 張牌,

  • of 52 cards, or any objects, are possible.

    或是其他東西的排列方式可能有多少種。

  • Now, 52 may not seem like such a high number,

    現在,52 看起來似乎不是很大的數字,

  • but let's start with an even smaller one.

    那我們從較小的數字開始說起。

  • Say we have four people trying to sit

    有四個人,

  • in four numbered chairs.

    試著要坐在四張椅子。

  • How many ways can they be seated?

    他們有幾種坐下的方式?

  • To start off, any of the four people can sit

    一開始,四個人中的任何人,

  • in the first chair.

    都可以坐在第一張椅子上。

  • Once this choice is made,

    一旦決定好第一個位置後,

  • only three people remain standing.

    只有三個人還站著。

  • After the second person sits down,

    在第二個人坐下後,

  • only two people are left as candidates

    只有兩個人可以選擇

  • for the third chair.

    第三張椅子,

  • And after the third person has sat down,

    當第三個人坐下後,

  • the last person standing has no choice

    最後一個站著的人沒有選擇權,

  • but to sit in the fourth chair.

    只能坐在第四張椅子。

  • If we manually write out all the possible arrangements,

    如果我們手寫列出所有可能的組合,

  • or permutations,

    或排列,

  • it turns out that there are 24 ways

    四個人坐四張椅子的組合,

  • that four people can be seated into four chairs,

    算出來有 24 種,

  • but when dealing with larger numbers,

    但當處理較大數字時,

  • this can take quite a while.

    可能需要花多一點時間計算。

  • So let's see if there's a quicker way.

    所以我們看看是否有更快的方法。

  • Going from the beginning again,

    再從一開始看起,

  • you can see that each of the four initial choices

    你會發現第一張椅子,

  • for the first chair

    有四個人可以選擇坐上去,

  • leads to three more possible choices for the second chair,

    導致第二張椅子只有三個人可以選擇坐上去,

  • and each of those choices

    前兩個選擇完,

  • leads to two more for the third chair.

    第三張椅子只有兩個人可以選擇坐上去。

  • So instead of counting each final scenario individually,

    我們可以將每張椅子的可被選擇的機會相乘,

  • we can multiply the number of choices for each chair:

    而不是單獨計算,

  • four times three times two times one

    4 x 3 x 2 x 1,

  • to achieve the same result of 24.

    得出的結果一樣是 24。

  • An interesting pattern emerges.

    一個有趣的模式出現了。

  • We start with the number of objects we're arranging,

    我們從排列的對象數開始排列,

  • four in this case,

    在這裡有四個,

  • and multiply it by consecutively smaller integers

    並且乘以連續且較小的整數,

  • until we reach one.

    直到我們乘到 1。

  • This is an exciting discovery.

    這是個有趣的發現。

  • So exciting that mathematicians have chosen

    數學家

  • to symbolize this kind of calculation,

    將這種運算方式,

  • known as a factorial,

    稱為階乘

  • with an exclamation mark.

    用驚嘆號表示。

  • As a general rule, the factorial of any positive integer

    基本的規則就是,

  • is calculated as the product

    將任何正整數的階乘,

  • of that same integer

    計算為該整數,

  • and all smaller integers down to one.

    與所有較小的整數,直到 1 的乘積。

  • In our simple example,

    在這個簡單的例子中,

  • the number of ways four people

    四個人可以坐在椅子

  • can be arranged into chairs

    的排列數量,

  • is written as four factorial,

    寫成四個階乘,

  • which equals 24.

    也就等於 24。

  • So let's go back to our deck.

    現在回到撲克牌這裡,

  • Just as there were four factorial ways

    就如同四個人的排列,

  • of arranging four people,

    四階乘運算,

  • there are 52 factorial ways

    排列 52 張牌,

  • of arranging 52 cards.

    有 52! 種方式。

  • Fortunately, we don't have to calculate this by hand.

    幸運地,我們可以不用手算,

  • Just enter the function into a calculator,

    只要將公式運算到計算機,

  • and it will show you that the number of

    它將會顯示

  • possible arrangements is

    可能的排列組合,

  • 8.07 x 10^67,

    是 8.07 x 10 的 67 次方。

  • or roughly eight followed by 67 zeros.

    或是約 8 的後面在加 67 個 0。

  • Just how big is this number?

    這數字到底有多大?

  • Well, if a new permutation of 52 cards

    如果從 138 億年前開始,

  • were written out every second

    每秒可以

  • starting 13.8 billion years ago,

    寫出一種新的排列方法,

  • when the Big Bang is thought to have occurred,

    當人們認為發生大爆炸時,

  • the writing would still be continuing today

    仍可以持續寫至今天,

  • and for millions of years to come.

    直到數百萬年後。

  • In fact, there are more possible

    事實上,比起地球上的原子,

  • ways to arrange this simple deck of cards

    還有更多撲克牌

  • than there are atoms on Earth.

    的可能排列組合。

  • So the next time it's your turn to shuffle,

    所以下一次換你洗牌時,

  • take a moment to remember

    花一點時間去想,

  • that you're holding something that

    你拿到的牌,

  • may have never before existed

    可能是從未發生過的組合,

  • and may never exist again.

    可能也不會再出現了。

Pick a card, any card.

挑選一張牌,任何一張都可以。

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋