Placeholder Image

字幕列表 影片播放

  • In the 1920's,

    在1920年時期,

  • the German mathematician David Hilbert

    德國數學家大衛‧希爾伯特

  • devised a famous thought experiment

    設計了一個聞名的思考實驗

  • to show us just how hard it is

    向世人展示要了解「無限」的概念

  • to wrap our minds around the concept of infinity.

    究竟有多麼困難。

  • Imagine a hotel with an infinite number of rooms

    試想一間擁有無限多間客房的旅館

  • and a very hardworking night manager.

    和一名非常努力工作的夜班經理。

  • One night, the Infinite Hotel is completely full,

    有一晚,這間旅館的房間均已客滿

  • totally booked up with an infinite number of guests.

    入住了無限名房客。

  • A man walks into the hotel

    一個男人走進了旅館,

  • and asks for a room.

    想要入住

  • Rather than turn him down,

    與其拒絕他,

  • the night manager decides to make room for him.

    這名夜班經理決定為他騰出一間空房。

  • How?

    怎麼做呢?

  • Easy, he asks the guest in room number 1

    很簡單,經理先將原先入住1號房的客人

  • to move to room 2,

    安置至2號房

  • the guest in room 2 to move to room 3,

    將原先入住2號房的客人安置至3號房,

  • and so on.

    依此類推。

  • Every guest moves from room number "n"

    n號房間原有的客人

  • to room number "n+1".

    皆安置到n+1號房間。

  • Since there are an infinite number of rooms,

    由於旅館內有無限多個房間,

  • there is a new room for each existing guest.

    每一位既有的房客都能夠搬到新的房間,

  • This leaves room 1 open for the new customer.

    於是新的客人便得以入住1號房。

  • The process can be repeated

    這個過程可不斷重複,

  • for any finite number of new guests.

    只要新房客的數目是有限可數的。

  • If, say, a tour bus unloads

    假如一輛遊覽車駛進旅館

  • 40 new people looking for rooms,

    車上下來了40人都想入住

  • then every existing guest just moves

    那麼每一位既有的房客

  • from room number "n"

    只要從原先入住的n號房

  • to room number "n+40",

    搬到n+40號房

  • thus, opening up the first 40 rooms.

    就能將前40間房都空出來給新客人。

  • But now an infinitely large bus

    但假如有一輛無限大的遊覽車

  • with a countedly infinite number of passengers

    載滿了無限多名的乘客

  • pulls up to rent rooms.

    停進旅館要入住

  • Countedly infinite is the key.

    「可數無限」便成了關鍵。

  • Now, the infinite bus of infinite passengers

    這輛載滿無限多名乘客的無限大遊覽車

  • perplexes the night manager at first,

    起初讓夜班經理相當苦惱

  • but he realizes there's a way

    幸好他後來還是找到了

  • to place each new person.

    能夠安頓每個新房客的方法。

  • He asks the guest in room 1

    他將原先入住1號房的客人

  • to move to room 2.

    安置於2號房;

  • He then asks the guest in room 2

    再將2號房的客人

  • to move to room 4,

    安置於4號房;

  • the guest in room 3

    將3號房的客人

  • to move to room 6,

    安置於6號房;

  • and so one.

    依此類推。

  • Each current guest moves from room number "n"

    每一位既有的房客都從原先入住的n號房

  • to room number "2n",

    搬到2n號房

  • filling up only the infinite even-numbered rooms.

    便只有無限間數的雙號房會有人住

  • By doing this, he has now emptied

    如此一來,旅館中

  • all of the infinitely many odd-numbered rooms,

    無限多間的單號房都是空的了

  • which are then taken by the people

    而無限大的遊覽車上所乘載的無限多名乘客

  • filing off the infinite bus.

    便可入住

  • Everyone's happy and the hotel's business

    這不僅是皆大歡喜的結果

  • is booming more than ever.

    旅館的生意也越發興隆了。

  • Well, actually, it is booming

    不過實際上,旅館的生意

  • exactly the same amount as ever,

    其實和先前相比沒有任何變化

  • banking an infinite number of dollars a night.

    每一晚都賺進無限可數的利潤。

  • Word spreads about this incredible hotel.

    這間不可思議的旅館名氣越來越響亮

  • People pour in from far and wide.

    人們從各地蜂擁而至

  • One night, the unthinkable happens.

    有一晚,意想不到的事發生了

  • The night manager looks outside

    夜班經理向外頭一看

  • and sees an infinite line

    發現有無限多輛大巴士

  • of infinitely large buses,

    正在旅館前大排長龍

  • each with a countedly infinite number of passengers.

    每輛巴士上都載滿了無限可數的乘客。

  • What can he do?

    他該怎麼辦呢?

  • If he cannot find rooms for them,

    如果他無法為這些人安排房間

  • the hotel will lose out

    旅館便將損失

  • on an infinite amount of money,

    無限大的一筆收入

  • and he will surely lose his job.

    他也一定會丟了飯碗。

  • Luckily, he remembers

    還好,他還記得

  • that around the year 300 B.C.E.,

    大約在西元前300年時

  • Euclid proved that there is an infinite quantity

    歐幾里得證明了一件事:

  • of prime numbers.

    質數是無限的。

  • So, to accomplish this seemingly impossible task

    於是為了達成這項看似不可能的任務

  • of finding infinite beds

    找到無限多的床位

  • for infinite buses

    給乘坐在無限多輛巴士上的

  • of infinite weary travelers,

    的無限多名疲憊旅客

  • the night manager assigns every current guest

    夜班經理將每一位既有房客

  • to the first prime number, 2,

    都安置在第一個質數,2,

  • raised to the power of their current room number.

    再依該房客原本入住的房間號碼次方的房間號碼。

  • So, the current occupant of room number 7

    於是,原本入住7號房的客人

  • goes to room number 2^7,

    就會改住(2的7次方)號房

  • which is room 128.

    也就是第128號房。

  • The night manager then takes the people

    接著,夜班經理將無限多輛巴士中

  • on the first of the infinite buses

    第一輛巴士上的所有乘客

  • and assigns them to the room number

    都安排在下一個質數3

  • of the next prime, 3,

    再依每一名乘客在巴士上的座號次方

  • raised to the power of their seat number on the bus.

    所對應的房號。

  • So, the person in seat number 7 on the first bus

    如此一來,第一輛巴士上坐在7號座位的客人

  • goes to room number 3^7

    便會入住(3的7次方)號房

  • or room number 2,187.

    也就是2187號房。

  • This continues for all of the first bus.

    第一輛巴士上的客人皆經此安排。

  • The passengers on the second bus

    第二輛巴士上的客人

  • are assigned powers of the next prime, 5.

    所各自入住的房號則是下一個質數5的座號次方

  • The following bus, powers of 7.

    下一輛巴士,7的次方

  • Each bus follows:

    依序排列:

  • powers of 11,

    11的次方、

  • powers of 13,

    13的次方、

  • powers of 17, etc.

    17的次方等等。

  • Since each of these numbers

    由於這些數字

  • only has 1 and the natural number powers

    只有1和數字本身的自然數次方

  • of their prime number base as factors,

    為其公因數

  • there are no overlapping room numbers.

    就不會有重複的房號產生。

  • All the buses' passengers fan out into rooms

    所有的客人便遵循這從質數發展出來的

  • using unique room assignment schemes

    獨特房間安排方式

  • based on unique prime numbers.

    各自散開進入他們的房間。

  • In this way, the night manager can accomodate

    如此一來,夜班經理便能將

  • every passenger on every bus.

    每一輛巴士上的每一位客人都安置妥當。

  • Although, there will be many rooms that go unfilled,

    雖然會因此有許多空房產生

  • like room 6

    例如6號房

  • since 6 is not a power of any prime number.

    因為6不是任何一個質數的次方

  • Luckily, his bosses weren't very good in math,

    還好,夜班經理的老闆們並沒有很會算數學

  • so his job is safe.

    他也因此保住了他的工作。

  • The night manager's strategies are only possible

    這位夜班經理所想出的策略之所以可行

  • because while the Infinite Hotel

    是因為當這間無限旅館

  • is certainly a logistical nightmare,

    雖然從後勤上來講像是一場噩夢

  • it only deals with the lowest level of infinity,

    卻也只處理無限的最低層級

  • mainly, the countable infinity

    也就是可數的無限,

  • of the natural numbers,

    像是自然數

  • 1, 2, 3, 4, and so on.

    1、2、3、4, 等等。

  • Georg Cantor called this level of infinity aleph-zero.

    另一名數學家康托爾稱這種程度的無限為「阿列夫零」。

  • We use natural numbers for the room numbers

    旅館的房號和巴士上的座號

  • as well as the seat numbers on the buses.

    皆使用自然數。

  • If we were dealing with higher orders of infinity,

    假如我們今天所面對的是更高等的無限

  • such as that of the real numbers,

    例如實數的程度,

  • these structured strategies

    此類架構之下的策略

  • would no longer be possible

    便不再可行

  • as we have no way

    因為我們將無法

  • to systematically include every number.

    有系統的包含每一個數字。

  • The Real Number Infinite Hotel has

    實數無限旅館將會有

  • negative number rooms in the basement,

    負數房號在地下樓層、

  • fractional rooms,

    和幾分之幾的房號

  • so the guy in room 1/2 always suspects

    於是住在1/2號房的人便總會懷疑

  • he has less room than the guy in room 1.

    自己的房間大小不如1號房

  • Square root rooms, like room radical 2

    平方根號的房號,像是(2的開根號)號房

  • and room pi,

    以及數學常數Pi號房,

  • where the guests expect free dessert.

    入住此房的客人也許會期待被招待點心

  • What self-respecting night manager

    有哪一個有自尊心的夜班經理

  • would ever want to work there

    會想在這裡工作

  • even for an infinite salary?

    即便薪水是無限高?

  • But over at Hilbert's Infinite Hotel,

    但在希爾伯特的無限旅館

  • where there's never any vacancy

    住房率總是百分之百

  • and always room for more,

    卻總還是有空房可供入住

  • the scenarios faced by the ever diligent

    這名勤奮並可能過於好客的夜班經理

  • and maybe too hospitable night manager

    所面對的各種狀況

  • serve to remind us

    可以提醒我們

  • of just how hard it is

    理解「無限」這樣的概念

  • for our relatively finite minds

    對人類相對有限的頭腦來說

  • to grasp a concept as large as infinity.

    是多大的困難。

  • Maybe you can help tackle these problems

    或許在好好睡一頓覺後,

  • after a good night's sleep.

    你會有辦法解開這些難題。

  • But honestly, we might need you

    但老實說,你可能會在半夜兩點時

  • to change rooms at 2 a.m.

    被通知要換房間。

In the 1920's,

在1920年時期,

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋