Arethosetwosetsofcalipersdecidetheyare, sir, If I gobacktotheyareexactlysowecouldtryanddoitwithonepair, butit's hardtolinesomethingupagainstitself.
Sowhen I lookatthedifferentpossiblejumpsfromthisonetoherefromheretoherefromheretothesetwofromthesetwotothesetoandfromthesetwotothefullthing, it's thesameratioeverytime.
They'reclearlynotwhatwewant, butthisis 1.3 to 5 anditiscalledtheplasticratio.
Bitunfortunateas a name.
Whyisitcalledthat?
Well, itwasnamedbeforeplasticwasnameplasticongetstheoldmeaningofplastic, meaning a sortofflexibleormultipurposenumberononeofthefirstpeopletoinvestigateit.
HanStallone, whowasactuallyanarchitectand a monk.
I thinkhenamedittheplasticratiobecausehethoughtthiswastherialultimatesystemofbeautythatyoucouldusearchitectureandallthatstuffandheevendesigned a buildingonthebasisofit.
So I youknow, I start, let's startwithjust 111 Fibonacciwouldbe 11 I'd addthesetwo, but I'm goingtoskipthisand I'm gonnaaddthesetwotogetherso I gettoThat's thesumofthesetwo.
Now, I'm goingtoskipthat, too, andaddthetwoones.
Andthat's toskipthatonatthesetwo.
Three.
Skipthat, Matt.
These 24 579 12 16 theeffectofhavingtheequilateraltriangleisyougetthatskipping.
HowdidwefindthattheFibonaccinumbersendupbeingtheratiobetweenonethenext, withthewayyoulookatitas I replacethisdrawingwhereeverythingissquaresbyonerectanglelikehot a squareoffonDhe.
Sothisbox, ifwehavethepropertythatwetakeoff a similarrectangle, wetakeoff a squareandwe'releftwithsimilarrectanglehasthesameproportionthatwe'vebeenlookingatagain.
Wegetthesameequationcomingout.
Youknowthatthisideaofthegoldenratioisonethat's justsuch a classic.