Fixedamounts, rightInotherenvironmentslike, say, robotics, therobotscouldmove a continuousamountsoitcanmoveinanywherefrom 0 to 1 minusoneplusone.
Anythingalong a continuousnumberinterval.
Andthisposes a problemformostdeepreinforcementlearningmethodslikesake, youlearning, whichworkspectacularlywellindiscreetenvironmentsbutcannottacklecontinuousactionspaces.
Functioninthiscasemapsthecurrentstateandset a possibleactionstotheexpectedfeaturereturnstheagentexpectstoreceive.
Soinotherwords, Agentsays, Hey, I'm insomestatemeaningsomeconfigurationofpixelsonthescreeninthecaseofftheatreoriginAtariLibrary, forinstance, andsays, Okay, if I takeoneoranotheraction, Whatistheexpectedfuturereturn?
Assumingthat I followmypolicyactorcriticmethodsareslightlydifferentandthattheattempttolearnthepolicydirectlyandrecallthepolicyis a probably a distributionthattellstheagentwhattheprobabilityselectinganactionisgivenitsinsomestate s.
Sothesetwoalgorithmshave a numberofstrengthbetweenthem.
Ah, anddeepdeterministicpolicy.
Gradyis a waytomarrythestrengthofthesetwoalgorithmsintosomethingthatdoesreallywellfordiscreetaction.
Sorry, continuousactionspaces.
Youdon't needtoknowtoomuchmorethanthat.
Everythingelseyouneedtoknow.
I'llexplainintheirrespectivevideos.
Sointhefirstvideo, you'regoingtogettoseehowah, I goaheadandreadpapersandthenimplementthemonthefly.
Andthen, ofcourse, theywilltypicallygive a tablewheretheyoutlinetheactualalgorithm.
Andoftentimes, if I'm in a hurry, I willjustjumptothisbecause I'vedonethisenoughtimesthat I canreadthis.
Whatiscalledpseudocodeifyou'renotfamiliarwiththatpseudocodeisjustanEnglishrepresentationofcomputercode s Oh, wewilltypicallyusethatweoutlined a problemon.
It's oftenusedinpapers, ofcourse.
Sotypically, I'llstartherereadingitandthenworkbackwardbyreadingthroughthepapertoseewhat I missed.
Butofcourseittalksabouttheperformanceacross a wholehostofenvironments.
I don't thinkthat's goingonhere, butitdoesmakemeraisemyeyebrowwhenever I seeit.
Theoneexceptionisthetorques, whichis a totallyopenrateracecarsimulatorenvironment.
I don't knowifwe'llgettothatonthischannel.
Thatwouldbe a prettycoolproject, butthatwouldtakeme a fewweekstogetthrough, Um, butrightawayyounoticethattheyhave a wholebunchofenvironments.
Thescoresareallrelativetoone, andoneisthescorethattheagentgetson a planningalgorithm, whichtheyalsodetaillateron.
Sothoseweretheresults, Um, andtheytalkmoreabout I don't thinkwesawtheheadline, buttheytalkaboutrelatedworkwhichtalksaboutotheralgorithmsthataresimilarandtheirshortcomings, right.
Theydon't everwanttotalkupotheralgorithms.
Youalwayswannatalkupyourown.
I wrotethemtomakeyourselfsoundgood.
Um, youknow, whilstyoubewriting a paperinthefirstplaceandofcourse, itconcludingthattieeverythingtogetherreferences I don't usuallygodeepinthereferences.
Um, ifthereissomethingthat I feel I really, reallyneedtoknow, I maylookat a reference, but I don't typicallybotherwithhim.
Ifyouwere a PhDstudent, thenitwouldbehooveyoutogointothereferencesbecauseyoumustbeanabsoluteexpertonthetopic.
Sothisiswhereifyousawmypreviousvideowhere I didtheimplementationofDDPGandPYTORCHandthecontinueslunarlanderenvironment, thisiswhere I gotmostofthisstuff.
Itwasalmostidentical.
With a littlebitoftweaking.
I leftoutsomestufffromthispaper, but, uh, prettymuchallofitcamefromhere.
Inparticularthehiddenlayersizes 403 100 units, A czwell, astheinitializationoftheparametersfromuniformdistributionofthegivenranges s Sojusttorecap, thiswas a reallyquickoverviewofthepaperjustshowingmyprocessofwhat I lookat.
Youcandescribeties, theactionspace, butthenyouendupwith a wholeboatloadactions.
Youknow, Whatisit?
2187 actions.
Soit's intractableanyway.
Andtheysaywhatwepresent, youknow, a modelfreeoffpolicyalgorithm.
Andthenitcomesdowntothissectionwhereitsaysthenetworkistrainedoffpolicywithsamplesfrom a replaybuffertominimizecorrelationsverygoodandtrainwiththetargetquenetworktogive a consistenttargets.
Sothepapermentioned a replaybufferaswellas a targetcutenetwork.
SothetargetquenetworkFornow, wedon't reallyknowwhatit's gonnabe, butwecanwriteitdownsowe'llsaywe'llneed a replaybufferclassand I need a classfor a targetHughNetwork.
Now, I wouldassumethatifyouweregoingtobeimplementing a paperoffthisadvanceddifficulty, you'd alreadybefamiliarwithyoulearningwhereyouknowthattheTargetNetworkisjustanotherinstanceof a generalizednetwork.
So a stochasticpolicyisoneinwhichthe, uh, softwaremapstheprobabilityoftakinganactionto a givenstatesoyoucanput a setofstateandoutcomes a probabilityselectinginactionandyouselectanactionaccordingtothatprobabilitydistribution, sothatrightawaybakesin a solutiontotheexplore, exploitdilemma, solongasallprobabilitiesarefinite, right?
Sosoaslongas a probabilityoftakinganactionforallstatesdoesn't gotozero.
Um, helearninghandlestheexploreexploitdilemmabyusingAbsalongreedyactionselectionwhereyouhave a randomparameterthattellsyouhowoftentoselect a randomnumber.
Sorry, randomaction.
Andthenyouselect a greedyactiontheremainderofthetimecoursepoliticsratingsdon't workthatway.
Theytypicallyusethestochasticpolicy.
Butinthiscase, wehave a deterministicpolicy.
Soyougottowonderrightaway, okay?
Wehave a deterministicpolicyhowwe'regonnahandletheexploreexploitdilemma.
Solet's gobacktoourtexteditorandmake a noteofthat.
Why I inordertoconsistentlytrainthecriticwithoutdiversions, thismayslowlearning, sincethetargetnetworksdelaythepropagationofvalueestimatesoverinpractice, wefoundthiswasalwaysgreatlyoutweighedbythestabilityoflearning, and I foundthataswell.
Youdon't get a wholelotofdiversions, butitdoestake a whiletotrain.
Anditsaysthistechniquenormalizeseachdimensionacrossthesamplesin a minibatchDevunitmeanandvariance, andalsomaintains a runningaverageofbeinginvarianceusedfornormalizationduringtestingduringexplorationandevaluation.
Soinourcase.
Uh, trainingandtestingare a slightlydifferentthaninthecaseofsupervisedlearning.
Sosupervisedlearning.
You'vemaintaineddifferentdatasetsor, uh, shoveledsubsetsof a singledatasettodotrainingandevaluationon.
Ofcourse, intheevaluationphase, youperformnowait.
Updatesofthenetwork.
Youjustseehowitdoesbasedonthetrain, inreinforcement, learningyoudosomethingsimilarwhereyouhave a setnumberofgameswhereyoutraintheagenttoachievesomesetofresults, andthenyouturnoffthelearningandallowittojustchooseactionsbaseduponwhateverpolicyitlearns.
Okay, So, uh, thetargetactorisjustthe, um, evaluationwillcallitthatforlackof a betterwordviaYushinactor.
Plussomenoiseprocess.
TheyusedOrnstein.
Uh, RolandBeck.
I don't think I spelledthatcorrectly.
Um, we'llneedtolookthatup, Uh, that I'vealreadylookeditup.
Um, mybackgroundisinphysics, soitmadesensetome.
It's basically a noiseprocessthatmodelsthemotionofbrowningparticleswhicharejustparticlesthatmovearoundundertheinfluenceoftheirinteractionwiththeotherparticlesinsometypeofmediumlikelosses.
Soweneedsomewayoftakingthatintoaccountsosodeterministicpolicymeans, putstheactualactionandsaidof a probabilitywe'llneed a waytoboundtheactionstotheenvironment.
I'vealreadyimplementedit, butthisiskindofmythoughtprocesses I wentthroughthefirsttime.
Um, a CZbestas I canmodelitafterhavingfinishedtheproblem.
Um, andyoucanalsouse a sheetofpaperthatsomekindofmagicaboutwritingstuffdownonpaper, Butwe'regonnausethecodeeditorbecause I don't wanttouseanoverheadprojectortoshowyouguys a frigginseatedfavoritesIsn't greatschoolhere.
Solet's headbacktothepaperandtake a lookandtheactualalgorithmtogetsomerealsenseofwhatwe'regonnabeimplementing.
Theresultsreallyaren't superimportanttousyet.
We'llusethatlateron.
Ifwewantedthedebugged, themodelperformance, butthefactthattheyexpressit, rollitinto a planning.
Ourthatmakesitdifficult, right?
Soschooldowntothedatareallyquick.
So, uh, theygiveanotherthingtonote.
I can't talkaboutthisearlier, but I guessnowis a goodtime.
Soit's timetolookatthealgorithmandseehowwefillinallthedetailsSorandomlyInitialize a critic, networkandactornetworkwithweightsFada, Supercutefate, A sperm, you.
Sotheyhad a super Q primegetsinitializedwithfate a super Q andfatumyouprimegetsinitializedoffateatsuperyou.
So, uh, wewillbeupdatingtheweightsrightoffthebatforthetargetnetworkswiththeevaluationthatworksandinitializethereplaybufferarenowthisisaninterestingquestion.
Howdoyouinitializethatreplaybuffers?
So I'veused a coupledifferentmethods.
Youcanjustinitializeitwithallzeros.
Andthenifyoudothatwhenyouperformthelearning, youwanttomakesurethatyouhave a numberofmemoriesthataregreaterthanorequaltotheminibatchsizeofyourtraining.
So I iseachstepofthateyes, eachelementofthatminibatchoftransitions.
Soyouwannabasicallyloopoverthatsetordo a vectorrise?
ImplementationLoopingismorestraightforward.
That's what I do.
I alwaysoptforthemoststraightforwardandnotnecessarilymostefficientwayofdoingthingsthefirsttimethroughbecauseyouwanttogetitworkingfirstandworryaboutimplementation.
So a mean, basically, wheneveryouseeoneofRandtimes a song, that's a meanthegradingtorespectactionsof Q ah, wheretheactionswerechosenaccordingtothepolicymuofthecurrentstate's S times, a GradyintwithrespecttotheweightsofMu, whereyoujustputthesetofstatesOkay, sothat'llbe a littlebittrickytoimplement.
Soandthisispartofthereason I chosetensorflowforthisparticularvideoisbecauseTENSORFLOWallowsustocalculateGrady's explicitly, AhandPytorch.
Youmayhavenoticedthatall I didwassaidcuetobe a functionofthe, um, thecurrentstateaswellastheactornetwork.
Andso I allowedpytorchtohandlethechainrule.
Thisiseffectively a changeable, Solet's let's scrollup a littlebit, too.