So I hadanothercheatingmomentwhen I realizedthiskayhereiseithergonnabeoddorevensothatKayiseithergonnaequalthat's used.
Shewas m thistimetoem, orit's goingtoequalthisis, ortwoemplusonceeitherevenorodd.
Andso I canspliteachoftheseintotheirtwooptions.
SothisoneiseithergonnabeIf I putto m inthereisgonnabe 12 m plusoneorif I putinto M plusone, it's gonnabe 12 m plussevenandthendownherethat's eithergoingtobeputintoend.
That's gonnabe 12 m minusone, forit's gonnabe 12 m plus 61 5 Okay, sonow I knoweverysingleprimenumberfallsintooneofthesefourcategories.
Andthen I wentthroughand I tookeachoftheseand, uh, squaredthemtoseewhathappens.
Butweknowwhenwemultiplythemtogether, thecombinedtotalwillbe a multipleofeight.
Sonowweknowthis.
Itis a multipleoffeightbecauseit's tooevennumberseithersideof a prime.
Andonceforoncetook, wehavetogetites.
We'vealsogotthreenumbersin a rowandeverybatchofthreenumbers.
Oneofthemhastobe a multipleofthree.
Everythirdnumberis a multipleofthreeagain.
It's notthemiddleone, becauseyouknowthatwhenthereisnot a motorpooloffthreebecauseitkindofthreeis a factor, it's a prime.
Sooneofthesehastobe a multipleofthreeagain.
Wedon't knowwhich.
Whenwemultiplythemtogether, thetotalmustbe a multipleofthree, sowealsoknowthatisdefinitely a multipleoffthree.
Andifsomethingisdefinitely a multipleofthree, isdefinitely a multipleofeight, itis a multipleoff 24.
Andsothat's it.
Justbecausethetwonumbersareeithersideof a prime.
Ifyoumultiplythemtogether, youget a number, whichis a multipleof 24.
Andactually, we'venotreallyusedthefactthatthisis a prime.
Allwe'veusedisthefactthatit's noteventhatisnot a multipleofthree.
Sowe'veactuallymanagedtoproveisthatallnumbers, whichdon't havetwoorthreeis a factor.
Ifyousquarethem, youget a number, whichisonemorethan a multipleof 24 that's alltheoneseithersideofeverysinglesix.
Sowhatactionshouldproveisboth.
Allprimesareeithersideoffmultiple a six, andifyousquareanynumberoneithersideof a multipleofsix, youalwaysget a number, whichisonemorethan a multipleof 24 thatisoneofmyfavoriteprimepatterns.
Thisisdefinitelyonetohave a lookatitspresentedbyprofessorBobBrier, whoisoneofmyfavoriteEgyptexplainers.
He's great, andhe's gonnahaveyouwritinginhiringlivesbeforeyouknowwhat's happening, althoughsomehow I doubtthat's theactualRosettaStonebehindhim.
I certainlyhopeit's nonowfor a freetrial, gotothegreatcoursesplusdotcomslashnumberfivethatshouldbewrittenonthescreenbeneathMay, Andthere's also a linkdowninthevideodescriptionwhereyoucanfindmoreinformation.
Bytheway, thatprimenumbersquaringstuffyoujustsaw a mantalkingabout.