Placeholder Image

字幕列表 影片播放

  • A couple of years ago I started using Twitter,

    幾年前,我開始使用推特(Twitter),

  • and one of the things that really charmed me about Twitter

    而推特它其中一樣 真的很吸引我的一點

  • is that people would wake up in the morning

    就是人們會一早起來

  • and they would say, "Good morning!"

    然後他們會說:「早安!」

  • which I thought,

    這讓我覺得,

  • I'm a Canadian,

    因為我來自加拿大,

  • so I was a little bit,

    所以我有一點點

  • I liked that politeness.

    喜歡這種禮貌。

  • And so, I'm also a giant nerd,

    而,我同時也是一個電腦狂,

  • and so I wrote a computer program

    所以我寫了一個電腦程式,

  • that would record 24 hours of everybody on Twitter

    它會記錄二十四小時中 在推特上每一位

  • saying, "Good morning!"

    說「早安」的人。

  • And then I asked myself my favorite question,

    接著我自己 一個我很喜歡的問題:

  • "What would that look like?"

    「這看起來會是什麼樣子?」

  • Well, as it turns out, I think it would look something like this.

    嗯,結果就是, 我想它看起來像這樣。

  • Right, so we'd see this wave of people

    好,所以我們可以看到 這股世界各地

  • saying, "Good morning!" across the world as they wake up.

    在起床時說「早安」的人 的波動。

  • Now the green people, these are people that wake up

    這些綠色的人,他們是

  • at around 8 o'clock in the morning,

    大約八點起床的。

  • Who wakes up at 8 o'clock or says, "Good morning!" at 8?

    有誰在八點起床或是 在八點的時候說「早安」?

  • And the orange people,

    而橘色的人,

  • they say, "Good morning!" around 9.

    他們大約在九點的時候說「早安」。

  • And the red people, they say, "Good morning!" around 10.

    接著是紅色的人, 他們大約在十點的時候說「早安」。

  • Yeah, more at 10's than, more at 10's than 8's.

    沒錯,十點的,十點的比八點的多。

  • And actually if you look at this map,

    而事實上如果你看 這張地圖,

  • we can learn a little bit about how people wake up

    你可以了解到 各地的人們

  • in different parts of the world.

    起床時間有什麼不同。

  • People on the West Coast, for example,

    比如說,西岸的人們

  • they wake up a little bit later

    他們比東岸的人們

  • than those people on the East Coast.

    晚起一些些。

  • But that's not all that people say on Twitter, right?

    但這不是推特上對話的全部,對吧?

  • We also get these really important tweets, like,

    還有一些非常重要的推文:

  • "I just landed in Orlando!! [plane sign, plane sign]"

    「我剛抵達奧蘭多!![飛機圖,飛機圖]」

  • Or, or, "I just landed in Texas [exclamation point]!"

    或是「我剛抵達德州![驚嘆號]」

  • Or "I just landed in Honduras!"

    或「我剛抵達洪都拉斯!」

  • These lists, they go on and on and on,

    這些清單,他們到這玩 到那玩,

  • all these people, right?

    都這些人,對吧?

  • So, on the outside, these people are just telling us

    所以,表面上, 這些人只是告訴我們

  • something about how they're traveling.

    一些他們旅行的事。

  • But we know the truth, don't we?

    但我們知道事實,對吧?

  • These people are show-offs!

    他們在炫耀!

  • They are showing off that they're in Cape Town and I'm not.

    他們在炫耀他們在開普敦 我卻不是。

  • So I thought, how can we take this vanity

    所以我想,我們可以如何 利用這虛榮心

  • and turn it into utility?

    而轉成有用的東西?

  • So using a similar approach that I did with "Good morning,"

    所以我用了 跟「早安」類似的方法,

  • I mapped all those people's trips

    我把這些人的旅程 標在地圖上,

  • because I know where they're landing,

    因為我知道他們目的地在哪。

  • they just told me,

    是他們說的,

  • and I know where they live

    而我知道他們住哪,

  • because they share that information on their Twitter profile.

    因為他們在推特上 分享他們的個人資訊。

  • So what I'm able to do with 36 hours of Twitter

    所以我能夠在 三十六小時的推特上做的事

  • is create a model of how people are traveling

    就是建立一個 全世界的人們

  • around the world during that 36 hours.

    在三十六小時內 旅行的模型。

  • And this is kind of a prototype

    這其實是一個原型,

  • because I think if we listen to everybody

    因為我想如果我們聆聽

  • on Twitter and Facebook and the rest of our social media,

    人們在推特、臉書、 各種社群網站的紀錄,

  • we'd actually get a pretty clear picture

    我們就可以得到,

  • of how people are traveling from one place to the other,

    人們如何旅行的清楚畫面,

  • which is actually turns out to be a very useful thing for scientists,

    這對科學家來說 將會非常有用,

  • particularly those who are studying how disease is spread.

    尤其是對那些 研究疾病如何傳播的人來說。

  • So, I work upstairs in the New York Times,

    所以,我在紐約時報樓上工作,

  • and for the last two years,

    在過去兩年裡,

  • we've been working on a project called, "Cascade,"

    我們一直在做一個叫做瀑布(Cascade)的專案,

  • which in some ways is kind of similar to this one.

    在某些方面來說 跟這個很像。

  • But instead of modeling how people move,

    但我們不是為人們如何移動 建構模型,

  • we're modeling how people talk.

    而是為人們如何對話 建構模型。

  • We're looking at what does a discussion look like.

    我們在看 一個像這樣的對話。

  • Well, here's an example.

    嗯,這是一個例子。

  • This is a discussion around an article called,

    這是關於一篇文章的討論。 這篇文章叫作

  • "The Island Where People Forget to Die".

    「人們忘記死亡的島嶼」

  • It's about an island in Greece where people live

    是在講希臘的一座島嶼,

  • a really, really, really, really, really, really long time.

    上面住的人都 非常、非常、非常長壽。

  • And what we're seeing here

    而我們可以看到的

  • is we're seeing a conversation that's stemming

    是一連串從底部、

  • from that first tweet down in the bottom, left-hand corner.

    左下角的第一篇推文 衍生出的討論串。

  • So we get to see the scope of this conversation

    所以我們可以看到 這個討論串的廣度,

  • over about 9 hours right now,

    現在是九小時左右的樣子,

  • we're going to creep up to 12 hours here in a second.

    它會在幾秒後 蔓延成十二小時的樣子。

  • But, we can also see what that conversation

    而,我們也可以用

  • looks like in three dimensions.

    三度空間的方式 看這討論串。

  • And that three-dimensional view is actually much more useful for us.

    而這立體的影像 對我們來說會更有用。

  • As humans, we are really used to things

    身為人類,我們已經習慣

  • that are structured as three dimensions.

    事物處於立體的狀態。

  • So, we can look at those little off-shoots of conversation,

    所以,我們可以看到 一些討論串的分枝,

  • we can find out what exactly happened.

    我們可以看到 到底發生哪些事情。

  • And this is an interactive, exploratory tool

    這是一個互動的、 探索性的工具,

  • so we can go through every step in the conversation.

    所以我們可以 點開每部份的討論。

  • We can look at who the people were,

    我們可以看到 發文的人們是誰、

  • what they said,

    說了什麼、

  • how old they are,

    年紀多大、

  • where they live,

    住在哪裡、

  • who follows them,

    誰跟著推文了,

  • and so on, and so on, and so on.

    還有許多、許多、許多。

  • So, the Times creates about 6,500 pieces of content every month,

    所以,紐約時報每個月發表了 大約 6,500 個文章,

  • and we can model every single one

    而我們會為 每個文章的討論串

  • of the conversations that happen around them.

    以及相關發生的事情 建構模型。

  • And they look somewhat different.

    而它們看起來有點不一樣。

  • Depending on the story

    跟文章內容有關,

  • and depending on how fast people are talking about it

    也取決於人們 有多快會得到訊息、

  • and how far the conversation spreads,

    或是討論串有傳得多遠,

  • these structures, which I call these conversational architectures,

    這些結構, 我把它叫做討論結構,

  • end up looking different.

    它們看起來都不一樣。

  • So, these projects that I've shown you,

    所以, 這些我給你看的專案,

  • I think they all involve the same thing:

    我想他們都 涉及同一件事:

  • we can take small pieces of data

    我們把小量的數據

  • and by putting them together,

    把它們放在一起,

  • we can generate more value,

    就可以產生更多價值,

  • we can do more exciting things with them.

    用它們做些更有趣的事。

  • But so far we've only talked about Twitter, right?

    到目前為止, 我們只談到推特而已,對吧?

  • And Twitter isn't all the data.

    而可用的數據並不只有推特而已。

  • We learned a moment ago

    一些日子前, 我們知道

  • that there is tons and tons,

    還有很多、很多、

  • tons more data out there.

    很多的數據可用。

  • And specifically, I want you to think about one type of data

    特別的是,我希望你們 想看看其中一種數據,

  • because all of you guys,

    因為你們所有人、

  • everybody in this audience, we,

    在場的所有人,我們、

  • we, me as well,

    我們,我也是,

  • are data-making machines.

    都是數據製造機。

  • We are producing data all the time.

    我們隨時都在製造資訊。

  • Every single one of us, we're producing data.

    我們之中每一個人, 都在製造數據。

  • Somebody else, though, is storing that data.

    雖然,其它有些人 是在儲存數據。

  • Usually we put our trust into companies to store that data,

    通常我們對一些公司付出信任 所以將數據儲存在那,

  • but what I want to suggest here

    但我想要建議的是

  • is that rather than putting our trust

    與其相信這些為我們

  • in companies to store that data,

    保存數據的公司,

  • we should put the trust in ourselves

    我們更應該相信自己

  • because we actually own that data.

    因為我們是這些數據的擁有人。

  • Right, that is something we should remember.

    沒錯,我們該記住這件事。

  • Everything that someone else measures about you,

    每一樣別人拿來評量你的標準,

  • you actually own.

    其實是你擁有的。

  • So, it's my hope,

    所以,我的希望是,

  • maybe because I'm a Canadian,

    也許是因為我是個加拿大人,

  • that all of us can come together

    我希望我們所有人 帶著這些

  • with this really valuable data that we've been storing,

    我們所儲存的珍貴的數據 聚在一起,

  • and we can collectively launch that data

    然後我們可以 一起分享這些數據

  • toward some of the world's most difficulty problems

    來解決這世上一些 最困難的問題,

  • because big data can solve big problems,

    因為大的數據 可以解決大的問題,

  • but I think it can do it the best

    但我想最好的狀況應是

  • if it's all of us who are in control.

    我們眾人自己主導這件事情。

  • Thank you.

    謝謝。

A couple of years ago I started using Twitter,

幾年前,我開始使用推特(Twitter),

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋