Placeholder Image

字幕列表 影片播放

  • As any current or past geometry student knows,

    就如同各時代 幾何學學生所熟知

  • the father of geometry was Euclid,

    幾何學之父是歐幾里得。

  • a Greek mathematician who lived in Alexandria, Egypt

    他是一位希臘數學家。 生活在西元前約三百年

  • around 300 B.C.E.

    埃及的亞歷山卓。

  • Euclid is known as the author

    歐幾里得是《幾何原本》

  • of a singularly influential work known as Elements.

    這部影響深遠著作的作者。

  • You think your math book is long?

    你覺得你的數學教科書太厚嗎?

  • Euclid's Elements is 13 volumes filled of just geometry.

    歐幾里得的《幾何原本》有 13 冊, 並且都只談論幾何。

  • In Elements, Euclid structured and supplemented

    在《幾何原本》中, 歐幾里得建構並補足許多

  • the work of many mathematicians that came before him,

    先前數學家的工作,

  • such as Pythagoras,

    像是畢達哥拉斯(Pythagoras)、

  • Eudoxus,

    歐多克索斯(Eudoxus)、

  • Hippocrates,

    希波克拉底(Hippocrates)、

  • and others.

    還有其它人。

  • Euclid laid it all out as a logical system of proof

    歐幾里得把他們的結果 用邏輯的證明系統寫下來,

  • built up from a set of definitions,

    這證明系統建構在

  • common notions,

    定義、共同認知、

  • and his five famous postulates.

    以及他那五個有名的公設之上。 (譯註:公設即一開始就認定要是對的敍述。)

  • Four of these postulates are very simple and straightforward,

    公設中其中四個 是簡單且直覺的,

  • two points determine a line, for example.

    比如說兩點可以決定一條線。

  • The fifth one, however, is the seed that grows our story.

    而那第五個公設, 則衍伸出我們要講的故事。

  • This fifth mysterious postulate is known

    這第五個神秘的公設

  • simply as the "Parallel Postulate".

    簡單地被稱作「平行公設」。

  • You see, unlike the first four,

    你看,和前面四個公設不一樣,

  • the fifth postulate is worded in a very convoluted way.

    這第五個公設敘述地 十分拐彎抹角。

  • Euclid's version states that,

    這是歐幾里得的版本:

  • "If a line falls on two other lines

    「如果一條直線與另兩條相交

  • so that the measure of the two interior angles

    並且同一側的的兩內角

  • on the same side of the transversal

    加起來小於兩個直角的角度,

  • add up to less than two right angles,

    那麼那兩條直線

  • then the lines eventually intersect on that side,

    終會在那一側相交,

  • and therefore are not parallel."

    因此它們並不平行。」

  • Wow, that is a mouthful!

    哇,這真繞口!

  • Here's the simpler, more familiar version:

    這是比較簡單、大家也比較熟知的版本:

  • "In a plane, through any point not on a given line,

    「在一平面中,給定一直線及線外的一點,

  • only one new line can be drawn

    只能畫出一條新的直線

  • that's parallel to the original one."

    通過這點並和原本的線平行。」

  • Many mathematicians over the centuries

    歷經好幾世紀,許多數學家

  • tried to prove the parallel postulate from the other four,

    試著要用其它四個公設 來證明平行公設,

  • but weren't able to do so.

    但都失敗了。

  • In the process, they began looking

    在這過程中,他們開始關注於

  • at what would happen logically

    如果第五公設實際上是錯的

  • if the fifth postulate were actually not true.

    邏輯上會有什麼問題。

  • Some of the greatest minds

    一些數學史上

  • in the history of mathematics ask this question,

    最偉大的先驅 都考慮過這個問題,

  • people like Ibn al-Haytham,

    像是海什木(Ibn al-Haytham)、

  • Omar Khayyam,

    歐瑪爾.海亞姆(Omar Khayyam)、

  • Nasir al-Din al-Tusi,

    納速拉丁.圖西(Nasir al-Din al-Tusi)、

  • Giovanni Saccheri,

    幾凡尼.歇克瑞(Giovanni Saccheri)、

  • Janos Bolyai,

    鮑耶.亞諾什(Janos Bolyai)、

  • Carl Gauss,

    卡爾.高斯(Carl Gauss)、

  • and Nikolai Lobachevsky.

    尼古拉.羅巴切夫斯基(Nikolai Lobachevsky)。

  • They all experimented with negating the Parallel Postulate,

    他們都曾試驗過平行公設 錯誤時的情形,

  • only to discover that this gave rise

    但發現這樣新的假設

  • to entire alternative geometries.

    只會建構出完全不一樣的幾何學。

  • These geometries became collectively known

    這些幾何學則合稱為

  • as Non-Euclidean Geometries.

    「非歐幾何」。

  • Well, we'll leave the details

    嗯,我們會把非歐幾何

  • of these different geometries for another lesson,

    的細節留到下一堂課,

  • the main difference depends on the curvature

    但主要的不同在於我們所討論的直線

  • of the surface upon which the lines are constructed.

    所在的曲面 它曲率的不同。

  • Turns out that Euclid did not tell us

    原來歐幾里得 並沒在《幾何原本》中

  • the entire story in Elements;

    告訴我們完整的故事;

  • he merely described one possible way

    他只是提供了一個可能的方法

  • to look at the universe.

    來看待宇宙。

  • It all depends on the context of what you're looking at.

    這取決於我們怎麼看它。

  • Flat surfaces behave one way,

    平坦的表面是一種樣子,

  • while positively and negatively curved surfaces

    而凹的或凸的表面

  • display very different characteristics.

    卻表現出很不一樣的特徵。

  • At first these alternative geometries seemed a bit strange

    一開始這些非歐幾何 似乎有點奇怪

  • but were soon found to be equally adept

    但很快地被發現 它也適切地

  • at describing the world around us.

    描述我們的宇宙。

  • Navigating our planet requires elliptical geometry

    在我們的星球上航行 須要橢圓幾何,

  • while the much of the art of M.C. Escher

    而同時埃舍爾 (譯註:M. C. Escher 為荷蘭版畫家。)

  • displays hyperbolic geometry.

    又以他的藝術 展現雙曲幾何的美。

  • Albert Einstein used non-Euclidean geometry as well

    愛因斯坦也使用非歐幾何

  • to describe the way that space time

    在廣義相對論中

  • becomes work in the presence of matter

    來描述時間與空間

  • as part of his General Theory of Relativity.

    在各狀態下如何改變。

  • The big mystery here is whether or not Euclid

    而最大的謎團在於 歐幾里得

  • had any inkling of the existence of these different geometries

    在寫下神秘的平行公設時

  • when he wrote his mysterious postulate.

    是否注意到這些 不同的幾何學的存在。

  • We may never know the answer to this question,

    我們可能永遠不會知道答案,

  • but it seem hard to believe

    但很難相信

  • that he had no idea whatsoever of their nature,

    像他這麼聰明的數學家

  • being the great intellect that he was

    並對幾何學了解如此透徹,

  • and understanding the field as thoroughly as he did.

    他會完全沒有注意到這件事。

  • Maybe he did know

    也許他確實知道,

  • and intentionally wrote the Parallel Postulate in such a way

    然後故意寫下這樣的平行公設,

  • as to leave curious minds after him

    好讓好奇的後輩們

  • to flush out the details.

    來發現其細節內容。

  • If so, he's probably quite pleased.

    如果是這樣,他也許對結果很滿意。

  • These discoveries could never have been made

    若沒有那些天才又求新求變的思想家,

  • without gifted, progressive thinkers

    他們可以屏棄一些先入為主的觀點

  • who are able to suspend their preconceived notions

    並獨立思考,

  • and think outside of what they have been taught.

    這些理論可能永遠不會被發現。

  • We, too, must be willing at times

    我們也應該樂於

  • to put aside our preconceived notions and physical experiences

    偶爾放下既有的概念 或是物理上的經驗

  • and look at the larger picture,

    來看看更廣的世界,

  • or we risk not seeing the rest of the story.

    否則我們將錯過許多事情。

As any current or past geometry student knows,

就如同各時代 幾何學學生所熟知

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋