Placeholder Image

字幕列表 影片播放

  • Translator: Leslie Gauthier Reviewer: Camille Martínez

    譯者: 易帆 余 審譯者: SF Huang

  • How many of you are creatives,

    你們有多少人是創意人、

  • designers, engineers, entrepreneurs, artists,

    設計師、工程師、企業家、藝術家?

  • or maybe you just have a really big imagination?

    或者你只是有無遠弗屆的想像力?

  • Show of hands? (Cheers)

    請舉一下手?(歡呼聲)

  • That's most of you.

    現場大部分人都是。

  • I have some news for us creatives.

    我有一些消息要給我們的創意人。

  • Over the course of the next 20 years,

    接下來的 20 年,

  • more will change around the way we do our work

    很多我們工作的方式,

  • than has happened in the last 2,000.

    將會遠遠不同於過去的 2000 年。

  • In fact, I think we're at the dawn of a new age in human history.

    實際上,我認為我們正處在 人類歷史新世代的黎明。

  • Now, there have been four major historical eras defined by the way we work.

    人類工作的方式, 有四個主要的歷史階段。

  • The Hunter-Gatherer Age lasted several million years.

    人類歷經了幾百萬年的 狩獵採集時代。

  • And then the Agricultural Age lasted several thousand years.

    然後經歷了幾千年的農業時代。

  • The Industrial Age lasted a couple of centuries.

    工業時代則延續了幾世紀。

  • And now the Information Age has lasted just a few decades.

    而目前的資訊時代才走了幾十年。

  • And now today, we're on the cusp of our next great era as a species.

    如今,身為人類的我們, 即將邁入下一個偉大的時代。

  • Welcome to the Augmented Age.

    歡迎來到「擴增時代」。

  • In this new era, your natural human capabilities are going to be augmented

    在這個新時代, 人類天生的能力將會被強化擴增,

  • by computational systems that help you think,

    電腦計算系統將幫助你思考、

  • robotic systems that help you make,

    機械人系統協助你製造、

  • and a digital nervous system

    遠超過你自然感官強度的 數位神經系統,

  • that connects you to the world far beyond your natural senses.

    能夠讓你與全世界接軌。

  • Let's start with cognitive augmentation.

    我們先從「認知擴增」談起。

  • How many of you are augmented cyborgs?

    現場有多少人是「強化的半機械人」?

  • (Laughter)

    (笑聲)

  • I would actually argue that we're already augmented.

    其實我想說的是, 我們都已經被強化、擴增了。

  • Imagine you're at a party,

    想像你正在參加一場派對,

  • and somebody asks you a question that you don't know the answer to.

    有人問了你一個 你不知道如何回答的問題。

  • If you have one of these, in a few seconds, you can know the answer.

    如果你有這個,只要幾秒鐘, 你就會得到答案。

  • But this is just a primitive beginning.

    但這也只是剛開始而已。

  • Even Siri is just a passive tool.

    甚至 Siri 也只是個被動工具。

  • In fact, for the last three-and-a-half million years,

    實際上,在過去的 350 萬年,

  • the tools that we've had have been completely passive.

    我們所有的工具都是被動的。

  • They do exactly what we tell them and nothing more.

    它們只會照我們的指令去做, 僅此而已。

  • Our very first tool only cut where we struck it.

    我們最早使用的工具, 遵循一個口令一個動作的指示。

  • The chisel only carves where the artist points it.

    藝術家指哪裡,雕刻刀就雕刻哪裡。

  • And even our most advanced tools do nothing without our explicit direction.

    即使最先進的工具,如果沒有 我們明確的指令也不會工作。

  • In fact, to date, and this is something that frustrates me,

    說真的,時到今日, 有件事仍讓我感覺很挫敗,

  • we've always been limited

    我們一直以來都被限制在

  • by this need to manually push our wills into our tools --

    「需要動手將我們的意念 傳達給工具」的這種迷思框框中——

  • like, manual, literally using our hands,

    就是得動手去做,即使有了電腦 還是得靠雙手。

  • even with computers.

    但我還是比較喜歡當 裡的史考迪。

  • But I'm more like Scotty in "Star Trek."

    (笑聲)

  • (Laughter)

    我也想跟電腦對話。

  • I want to have a conversation with a computer.

    當我說,「電腦, 我們來設計一輛車吧!」

  • I want to say, "Computer, let's design a car,"

    然後電腦就會顯示一輛車給我看。

  • and the computer shows me a car.

    然後我說:「不,要拉風一點, 德國味兒少一點。」

  • And I say, "No, more fast-looking, and less German,"

    接著「蹦」, 電腦給了我一個新選擇。

  • and bang, the computer shows me an option.

    (笑聲)

  • (Laughter)

    這樣的對話可能有點不切實際,

  • That conversation might be a little ways off,

    也許沒有我們認為的那麼不切實際,

  • probably less than many of us think,

    但現在,

  • but right now,

    我們正在做這件事。

  • we're working on it.

    這些工具將帶領我們大躍進, 從被動轉為衍生。

  • Tools are making this leap from being passive to being generative.

    「衍生設計工具 」 是利用電腦及演算法,

  • Generative design tools use a computer and algorithms

    合成出幾何結構,

  • to synthesize geometry

    產製出新的設計圖, 全部都是它們自己構思出來的。

  • to come up with new designs all by themselves.

    你只需要設定目標及限制條件。

  • All it needs are your goals and your constraints.

    我給各位舉個例子。

  • I'll give you an example.

    就拿這個無人機底盤為例,

  • In the case of this aerial drone chassis,

    你唯一要做的, 就是告訴它你的需求,

  • all you would need to do is tell it something like,

    像是,你要四個螺旋槳的,

  • it has four propellers,

    它越輕越好,

  • you want it to be as lightweight as possible,

    空氣動力學表現效率佳的。

  • and you need it to be aerodynamically efficient.

    電腦做的,就是探索 所有可能的解決方案:

  • Then what the computer does is it explores the entire solution space:

    每一個能解決且符合你標準的 可能方案——

  • every single possibility that solves and meets your criteria --

    有上百萬個。

  • millions of them.

    這需要大型電腦才能做到。

  • It takes big computers to do this.

    但它回饋給我們的設計方案,

  • But it comes back to us with designs

    是我們單憑自己無法想像出來的 設計方案。

  • that we, by ourselves, never could've imagined.

    電腦憑藉著自己的能力 做出這些東西——

  • And the computer's coming up with this stuff all by itself --

    我們人類沒有動筆畫任何東西,

  • no one ever drew anything,

    完全是它自己從頭、從零畫起的。

  • and it started completely from scratch.

    順便一提,這可不是偶然......

  • And by the way, it's no accident

    無人機的機體長的像飛鼠的骨盆,

  • that the drone body looks just like the pelvis of a flying squirrel.

    (笑聲)

  • (Laughter)

    那是因為演算法的計算模式,

  • It's because the algorithms are designed to work

    是遵循生物演化模式而設計的。

  • the same way evolution does.

    令人興奮的是, 我們開始見證這樣的科技

  • What's exciting is we're starting to see this technology

    在現實世界中實現。

  • out in the real world.

    我們與空中巴士 (歐洲最大飛機製造商)

  • We've been working with Airbus for a couple of years

    合作開發未來的概念機 已經好幾年了,

  • on this concept plane for the future.

    這計畫目前還在進行。

  • It's a ways out still.

    但最近,我們用了 衍生設計的人工智慧

  • But just recently we used a generative-design AI

    做出了這一個。

  • to come up with this.

    這是一個 3D 列印的客艙隔間板, 由一台電腦所設計。

  • This is a 3D-printed cabin partition that's been designed by a computer.

    它比原款式還要堅固, 但重量只有原本的一半,

  • It's stronger than the original yet half the weight,

    今年稍晚,它將跟 A320 空中巴士一起飛上天。

  • and it will be flying in the Airbus A320 later this year.

    所以現在電腦會主動生成、衍生了;

  • So computers can now generate;

    它們可以對界定明確的問題, 給出自己的答案。

  • they can come up with their own solutions to our well-defined problems.

    但它們並不是靠直覺做事。

  • But they're not intuitive.

    它們還是每次都得從頭開始,

  • They still have to start from scratch every single time,

    因為它們不會學習。

  • and that's because they never learn.

    不像瑪姬。

  • Unlike Maggie.

    (笑聲)

  • (Laughter)

    瑪姬其實比我們最先進的 設計工具都還要聰明。

  • Maggie's actually smarter than our most advanced design tools.

    這是什麼意思?

  • What do I mean by that?

    如果狗主人拿起狗鍊,

  • If her owner picks up that leash,

    瑪姬就知道有相當的確定性,

  • Maggie knows with a fair degree of certainty

    主人要帶她去散步了。

  • it's time to go for a walk.

    她是怎麼知道的?

  • And how did she learn?

    因為,每當主人拿起狗鍊, 他們就會一起去散步。

  • Well, every time the owner picked up the leash, they went for a walk.

    瑪姬會做三件事:

  • And Maggie did three things:

    她必須專注、

  • she had to pay attention,

    必須記得發生過什麼事、

  • she had to remember what happened

    必須在腦中記憶並產生一個模式。

  • and she had to retain and create a pattern in her mind.

    有趣的是,這正是電腦科學家

  • Interestingly, that's exactly what

    過去 60 年來,一直嘗試 要讓人工智慧做的事。

  • computer scientists have been trying to get AIs to do

    回想一下 1952 年,

  • for the last 60 or so years.

    科學家建立了這一台電腦, 它會玩井字遊戲。

  • Back in 1952,

    真了不起。

  • they built this computer that could play Tic-Tac-Toe.

    45 年後,1997 年,

  • Big deal.

    深藍擊敗了當時的西洋棋世界冠軍 卡司帕洛夫,

  • Then 45 years later, in 1997,

    2011年,華生 (IBM電腦) 在擊敗這兩個人,

  • Deep Blue beats Kasparov at chess.

    對電腦來說,這比下棋難多了。

  • 2011, Watson beats these two humans at Jeopardy,

    事實上,華生並不是從 預先定義的題庫中來找答案,

  • which is much harder for a computer to play than chess is.

    它必須使用推理 來擊敗它的人類對手。

  • In fact, rather than working from predefined recipes,

    就在幾個禮拜前,

  • Watson had to use reasoning to overcome his human opponents.

    DeepMind 的阿爾法圍棋 擊敗了世界圍棋冠軍,

  • And then a couple of weeks ago,

    而圍棋是我們人類最複雜的遊戲。

  • DeepMind's AlphaGo beats the world's best human at Go,

    事實上,圍棋走法的可能性

  • which is the most difficult game that we have.

    超過全宇宙的原子數量。

  • In fact, in Go, there are more possible moves

    所以為了取得勝利,

  • than there are atoms in the universe.

    阿爾法圍棋必須學會使用直覺。

  • So in order to win,

    實際上,有些下法, 阿爾法圍棋的程式人員也不懂

  • what AlphaGo had to do was develop intuition.

    為什麼阿爾法圍棋要那樣下。

  • And in fact, at some points, AlphaGo's programmers didn't understand

    世界變化真快。

  • why AlphaGo was doing what it was doing.

    我的意思是,想像一下—— 在人類壽命這麼長的時間裡,

  • And things are moving really fast.

    電腦已經從小孩子的遊戲

  • I mean, consider -- in the space of a human lifetime,

    發展到策略思考的頂尖水平。

  • computers have gone from a child's game

    電腦基本上的發展,

  • to what's recognized as the pinnacle of strategic thought.

    已經從史巴克大副進化到

  • What's basically happening

    寇克艦長。

  • is computers are going from being like Spock

    (笑聲)

  • to being a lot more like Kirk.

    對吧?從純粹的邏輯運算 到直覺判斷。

  • (Laughter)

    你們會跨過這座橋嗎?

  • Right? From pure logic to intuition.

    大部分人應該都說, 「喔,打死我也不要!」

  • Would you cross this bridge?

    (笑聲)

  • Most of you are saying, "Oh, hell no!"

    你瞬間就可以做出這個決定。

  • (Laughter)

    你就是隱約知道那座橋並不安全。

  • And you arrived at that decision in a split second.

    這種直覺判斷,

  • You just sort of knew that bridge was unsafe.

    就是目前我們深度學習系統 正在發展的能力。

  • And that's exactly the kind of intuition

    很快的,各位就可以

  • that our deep-learning systems are starting to develop right now.

    把你製作、設計出來的東西

  • Very soon, you'll literally be able

    拿給電腦評判,

  • to show something you've made, you've designed,

    然後它看完後會說,

  • to a computer,

    「抱歉,兄弟,這東西行不通, 你再試試別的吧!」

  • and it will look at it and say,

    或者你可以問它, 人們會不會喜歡你的新歌?

  • "Sorry, homie, that'll never work. You have to try again."

    或者你冰淇淋的新口味?

  • Or you could ask it if people are going to like your next song,

    再或者,更重要的,

  • or your next flavor of ice cream.

    你可以跟電腦一起解決

  • Or, much more importantly,

    我們從未面臨過的問題。

  • you could work with a computer to solve a problem

    例如,氣候變遷問題。

  • that we've never faced before.

    我們自己沒有做得很好的事,

  • For instance, climate change.

    我們當然可以利用身邊 各種資源來幫忙解決。

  • We're not doing a very good job on our own,

    這就是我接下來要談的,

  • we could certainly use all the help we can get.

    科技強化了我們的認知能力,

  • That's what I'm talking about,

    所以我們可以想像並設計出, 當我們還未具有強化擴增能力時

  • technology amplifying our cognitive abilities

    所未能創造出來的東西。

  • so we can imagine and design things that were simply out of our reach

    那麼,製造這些我們即將發明設計的

  • as plain old un-augmented humans.

    瘋狂新產品會如何呢?

  • So what about making all of this crazy new stuff

    我認為在人類擴增的時代, 現實世界

  • that we're going to invent and design?

    及虛擬智慧領域 與其皆有不分軒輊的重要相關性。

  • I think the era of human augmentation is as much about the physical world

    科技將會如何強化我們?

  • as it is about the virtual, intellectual realm.

    在現實世界,就是機械人系統。

  • How will technology augment us?

    沒錯,很多人擔心,

  • In the physical world, robotic systems.

    機械人會搶走人類的工作,

  • OK, there's certainly a fear

    在某些領域,確實是如此。

  • that robots are going to take jobs away from humans,

    但,我對以下的想法比較有興趣,

  • and that is true in certain sectors.

    就是,人類與機械人 將會一起工作並互相強化,

  • But I'm much more interested in this idea

    並開創出一種新的共生空間。

  • that humans and robots working together are going to augment each other,

    這是我們在舊金山的 應用研究實驗室,

  • and start to inhabit a new space.

    我們專研的領域之一就是 高階機械人,

  • This is our applied research lab in San Francisco,

    特別是人機合作的領域。

  • where one of our areas of focus is advanced robotics,

    這是畢夏普, 我們其中的一個機器人。

  • specifically, human-robot collaboration.

    在實驗裡,我將它設定為

  • And this is Bishop, one of our robots.

    在建築領域中, 幫助人類做重複性的工作——

  • As an experiment, we set it up

    比如說,在石牆上打出一個 插座孔或電燈開關孔。

  • to help a person working in construction doing repetitive tasks --

    (笑聲)

  • tasks like cutting out holes for outlets or light switches in drywall.

    所以,畢夏普的人類夥伴 就可以用簡單的英語和手勢

  • (Laughter)

    告訴它該做什麼,

  • So, Bishop's human partner can tell what to do in plain English

    有點像是在跟狗狗說話。

  • and with simple gestures,

    然後畢夏普會以完美的準確度

  • kind of like talking to a dog,

    執行人類所下達的指令。

  • and then Bishop executes on those instructions

    我們讓人類做人類擅長的事,像是:

  • with perfect precision.

    需要意識力、洞察力、做決策的工作。

  • We're using the human for what the human is good at:

    我們讓機械人做機械人擅長的事, 像是:

  • awareness, perception and decision making.

    準確度及重複性的工作。

  • And we're using the robot for what it's good at:

    畢夏普還有另一個很酷的專案。

  • precision and repetitiveness.

    這個專案的目標, 我們稱它為,

  • Here's another cool project that Bishop worked on.

    主要目標是把人類、電腦、 機械人的經驗結合起來,

  • The goal of this project, which we called the HIVE,

    一起工作解決極複雜的設計問題。

  • was to prototype the experience of humans, computers and robots

    人類的工作是

  • all working together to solve a highly complex design problem.

    在建築基地巡邏監工 並熟練地操作竹子——

  • The humans acted as labor.

    順便一提,因為每一根竹子的 材料性質都不一樣,

  • They cruised around the construction site, they manipulated the bamboo --

    所以機械人操作起來非常困難。

  • which, by the way, because it's a non-isomorphic material,

    但機械人做的是彎曲竹子的纖維,

  • is super hard for robots to deal with.

    這種事人類幾乎做不來。

  • But then the robots did this fiber winding,

    然後我們讓一台人工智慧 來控制所有的東西。

  • which was almost impossible for a human to do.

    它會告訴人類要做什麼, 告訴機械人要做什麼,

  • And then we had an AI that was controlling everything.

    並且對成千上萬個部件 進行持續的追蹤。

  • It was telling the humans what to do, telling the robots what to do

    有趣的是,

  • and keeping track of thousands of individual components.

    要建造出這樣的亭狀建築物,

  • What's interesting is,

    如果沒有人類、機械、人工智慧的 互補強化,根本不可能做得出來。

  • building this pavilion was simply not possible

    好,我再分享一個專案, 這個有點瘋狂。

  • without human, robot and AI augmenting each other.

    我們與阿姆斯特丹的藝術家 尤爾斯‧拉曼和他的 MX3D 團隊,

  • OK, I'll share one more project. This one's a little bit crazy.

    正使用衍生性設計 與機械列印的方式,

  • We're working with Amsterdam-based artist Joris Laarman and his team at MX3D

    打造世界第一座機械人自造的橋梁。

  • to generatively design and robotically print

    所以,就在我們談話的這一刻,

  • the world's first autonomously manufactured bridge.

    尤爾斯正和人工智慧一起 在阿姆斯特丹設計這座橋梁。

  • So, Joris and an AI are designing this thing right now, as we speak,

    等他們設計完成後, 我們就會按下「啟動」開關,

  • in Amsterdam.

    讓機械人開始 用不鏽鋼 3D 列印出橋梁,

  • And when they're done, we're going to hit "Go,"

    在沒有人類的介入幫忙下, 它們會持續地列印

  • and robots will start 3D printing in stainless steel,

    直到橋樑完工為止。

  • and then they're going to keep printing, without human intervention,

    所以,電腦將強化

  • until the bridge is finished.

    我們的想像及設計新事物的能力,

  • So, as computers are going to augment our ability

    機械人系統將協助我們製造

  • to imagine and design new stuff,

    我們以前無法製造的東西。

  • robotic systems are going to help us build and make things

    但是我們感知和控制 這些東西的能力呢?

  • that we've never been able to make before.

    我們製成東西的神經系統 又如何呢?

  • But what about our ability to sense and control these things?

    我們的神經系統,人類的神經系統,

  • What about a nervous system for the things that we make?

    可以告訴我們周遭發生的每一件事。

  • Our nervous system, the human nervous system,

    但這些東西的神經系統, 最多只能算「尚未成熟」。

  • tells us everything that's going on around us.

    比如說,車輛本身 不會主動通告市政府的工部門,

  • But the nervous system of the things we make is rudimentary at best.

    說它在經過百老匯和 莫里森轉角口時撞到水坑。

  • For instance, a car doesn't tell the city's public works department

    建築物本身不會告知它的設計師,

  • that it just hit a pothole at the corner of Broadway and Morrison.

    裡面的居民是否喜歡住在那裏,

  • A building doesn't tell its designers

    玩具製造商也不知道

  • whether or not the people inside like being there,

    他們的玩具 現在是跟誰在玩、在哪玩、

  • and the toy manufacturer doesn't know

    是不是玩的很開心。

  • if a toy is actually being played with --

    我確定設計師在設計芭比時,

  • how and where and whether or not it's any fun.

    一定想像過芭比的生活方式。

  • Look, I'm sure that the designers imagined this lifestyle for Barbie

    (笑聲)

  • when they designed her.

    但要是芭比變的很孤單怎麼辦?

  • (Laughter)

    (笑聲)

  • But what if it turns out that Barbie's actually really lonely?

    如果設計師知道

  • (Laughter)

    他們設計的東西, 在真實世界裡發生了什麼事,

  • If the designers had known

    像是道路、建築物、芭比——

  • what was really happening in the real world

    那他們就可以運用所獲得的訊息,

  • with their designs -- the road, the building, Barbie --

    為使用者創造出更好的使用體驗。

  • they could've used that knowledge to create an experience

    我們欠缺的就是一個

  • that was better for the user.

    可以連結所有我們設計、製造、 使用事物的神經系統。

  • What's missing is a nervous system

    如果大家在真實世界,能收到 自己創造的東西所回饋的資訊,

  • connecting us to all of the things that we design, make and use.

    那會如何呢?

  • What if all of you had that kind of information flowing to you

    所有我們製造的東西,

  • from the things you create in the real world?

    我們花了很多錢跟精力 ──

  • With all of the stuff we make,

    實際上光是去年, 大約就有兩兆美金 ──

  • we spend a tremendous amount of money and energy --

    去說服人們購買我們製造的東西。

  • in fact, last year, about two trillion dollars --

    但如果你所設計製造出來的東西 能連結傳送給你回饋的訊息,

  • convincing people to buy the things we've made.

    不管是在它們上市以後,

  • But if you had this connection to the things that you design and create

    或是在賣出或發表以後,

  • after they're out in the real world,

    我們就可以改變既有的銷售模式,

  • after they've been sold or launched or whatever,

    從說服人們來購買我們的產品,

  • we could actually change that,

    轉變成我們第一時間就做出 人們真正需要的東西。

  • and go from making people want our stuff,

    好消息是,我們正在研發的 這套數位神經系統

  • to just making stuff that people want in the first place.

    能連結我們與我們所設計的產品。

  • The good news is, we're working on digital nervous systems

    我們與在洛杉磯的

  • that connect us to the things we design.

    邦帝圖兄弟公司和他們的團隊

  • We're working on one project

    正合作進行一個專案。

  • with a couple of guys down in Los Angeles called the Bandito Brothers

    這幾個人做的其中一件事 就是製造「瘋狂賽車」,

  • and their team.

    他們做的東西真的很瘋狂。

  • And one of the things these guys do is build insane cars

    這些人真的是瘋了──

  • that do absolutely insane things.

    (笑聲)

  • These guys are crazy --

    不過是用最厲害的方式。

  • (Laughter)

    我們跟他們一起合作的模式,

  • in the best way.

    就是將傳統的賽車底盤

  • And what we're doing with them

    安裝神經系統。

  • is taking a traditional race-car chassis

    所以,我們在底盤 安裝了好幾組感應器,

  • and giving it a nervous system.

    然後請一位世界級車手來駕駛,

  • So we instrumented it with dozens of sensors,

    把車送到沙漠連續開它個一禮拜。

  • put a world-class driver behind the wheel,

    之後車子的神經系統

  • took it out to the desert and drove the hell out of it for a week.

    就能紀錄到車子發生的所有反應。

  • And the car's nervous system captured everything

    我們抓到了 40 億個資料點;

  • that was happening to the car.

    所有底盤所承受的壓力數據。

  • We captured four billion data points;

    然後我們做了一些瘋狂的事。

  • all of the forces that it was subjected to.

    我們把所有的資料

  • And then we did something crazy.

    連接到一個叫做「捕夢者」的 衍生設計人工智慧上 。

  • We took all of that data,

    所以當你把神經系統 安裝到設計工具上,

  • and plugged it into a generative-design AI we call "Dreamcatcher."

    並請它幫你建造一個 終極汽車底盤時,你會得到什麼?

  • So what do get when you give a design tool a nervous system,

    你會得到這個。

  • and you ask it to build you the ultimate car chassis?

    這是人類永遠無法設計出的東西。

  • You get this.

    如果真有人這樣設計過,

  • This is something that a human could never have designed.

    那個人一定也是透過 衍生設計的人工智慧強化、

  • Except a human did design this,

    數位神經系統的強化、

  • but it was a human that was augmented by a generative-design AI,

    和機械人一起合作, 才做得出來的東西。

  • a digital nervous system

    所以,如果擴增時代 就是我們的未來,

  • and robots that can actually fabricate something like this.

    而我們的認知、體格、知覺 都將被強化、擴增,

  • So if this is the future, the Augmented Age,

    那會是怎樣的世界?

  • and we're going to be augmented cognitively, physically and perceptually,

    那會是個什麼樣的美麗新世界?

  • what will that look like?

    我認為我們即將見證這麼一個世界,

  • What is this wonderland going to be like?

    一個東西從製造出來的變成

  • I think we're going to see a world

    「種 」出來的世界。

  • where we're moving from things that are fabricated

    一個東西從建造出來的

  • to things that are farmed.

    變成自己「長 」出來的世界。

  • Where we're moving from things that are constructed

    我們將從自我隔離

  • to that which is grown.

    轉變成相互交流。

  • We're going to move from being isolated

    我們也將從奪取者

  • to being connected.

    變成相互擁抱的給予者。

  • And we'll move away from extraction

    我也認為,我們將會從冀望產品 順從我們的指令,

  • to embrace aggregation.

    轉變成重視其自主性。

  • I also think we'll shift from craving obedience from our things

    由於我們的擴增強化能力,

  • to valuing autonomy.

    我們的世界將會有劇烈的變化。

  • Thanks to our augmented capabilities,

    我們的世界會變得更多元、 更加連通、

  • our world is going to change dramatically.

    更有活力、更多複雜的變化、

  • We're going to have a world with more variety, more connectedness,

    更有適應力、當然

  • more dynamism, more complexity,

    也會更美麗。

  • more adaptability and, of course,

    未來世界的雛型

  • more beauty.

    是我們前所未見的。

  • The shape of things to come

    為什麼?

  • will be unlike anything we've ever seen before.

    因為形塑這個世界的

  • Why?

    將會是科技、自然與人類的 新結盟關係。

  • Because what will be shaping those things is this new partnership

    對我而言,那樣的未來 是值得我們期待的。

  • between technology, nature and humanity.

    非常感謝各位。

  • That, to me, is a future well worth looking forward to.

    (掌聲)

  • Thank you all so much.

  • (Applause)

Translator: Leslie Gauthier Reviewer: Camille Martínez

譯者: 易帆 余 審譯者: SF Huang

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 機械人 電腦 人類 強化 設計

【TED】Maurice Conti:直覺式人工智能的不可思議的發明(直覺式人工智能的不可思議的發明|Maurice Conti) (【TED】Maurice Conti: The incredible inventions of intuitive AI (The incredible inventions of intuitive AI | Maurice Conti))

  • 66 13
    Zenn 發佈於 2021 年 01 月 14 日
影片單字