Placeholder Image

字幕列表 影片播放

  • Hello, I'm Joy, a poet of code,

    譯者: Suzie Tang 審譯者: Helen Chang

  • on a mission to stop an unseen force that's rising,

    你好 我叫玖伊 是個寫媒體程式的詩人

  • a force that I called "the coded gaze,"

    我的使命是

  • my term for algorithmic bias.

    終止一個隱形力量的崛起

  • Algorithmic bias, like human bias, results in unfairness.

    我稱這種力量為「數碼凝視」

  • However, algorithms, like viruses, can spread bias on a massive scale

    是我替偏差演算法取的名稱

  • at a rapid pace.

    偏差的演算法跟人的偏見一樣

  • Algorithmic bias can also lead to exclusionary experiences

    會導致不公平的結果

  • and discriminatory practices.

    然而演算法更像病毒

  • Let me show you what I mean.

    它傳播的偏見

  • (Video) Joy Buolamwini: Hi, camera. I've got a face.

    大量而迅速

  • Can you see my face?

    演算法偏差讓人 體驗到什麼叫做被排擠

  • No-glasses face?

    也會導致差別對待

  • You can see her face.

    讓我告訴你我的意思

  • What about my face?

    嗨 相機 我有一張臉

  • I've got a mask. Can you see my mask?

    你能看見我的臉嗎?

  • Joy Buolamwini: So how did this happen?

    不戴眼鏡呢?

  • Why am I sitting in front of a computer

    你看得見她啊

  • in a white mask,

    那麼我的臉呢?

  • trying to be detected by a cheap webcam?

    戴上面具 你看得見戴上面具嗎?

  • Well, when I'm not fighting the coded gaze

    到底是怎麽回事?

  • as a poet of code,

    我為什麽要坐在電腦前

  • I'm a graduate student at the MIT Media Lab,

    戴著白色面具

  • and there I have the opportunity to work on all sorts of whimsical projects,

    好讓這台廉價的攝影機能看得見我

  • including the Aspire Mirror,

    如果我沒有忙著對抗數碼凝視

  • a project I did so I could project digital masks onto my reflection.

    當個媒體程式詩人

  • So in the morning, if I wanted to feel powerful,

    我就是麻省理工媒體實驗室的研究生

  • I could put on a lion.

    我在那裡從事一些稀奇古怪的計劃

  • If I wanted to be uplifted, I might have a quote.

    包括照妖鏡

  • So I used generic facial recognition software

    照妖鏡計劃

  • to build the system,

    讓我能把數位面具投射在自己臉上

  • but found it was really hard to test it unless I wore a white mask.

    早上起來如果我需要強大的力量

  • Unfortunately, I've run into this issue before.

    我就投上一個獅子面具

  • When I was an undergraduate at Georgia Tech studying computer science,

    如果我缺乏鬥志

  • I used to work on social robots,

    我就放一段名人名言

  • and one of my tasks was to get a robot to play peek-a-boo,

    因為我使用一般的臉部辨識軟體

  • a simple turn-taking game

    來測試這個系統

  • where partners cover their face and then uncover it saying, "Peek-a-boo!"

    結果竟然發現

  • The problem is, peek-a-boo doesn't really work if I can't see you,

    電腦無法偵測到我

  • and my robot couldn't see me.

    除非我戴上白色面具

  • But I borrowed my roommate's face to get the project done,

    很不幸我之前就碰過這種問題

  • submitted the assignment,

    先前我在喬治亞理工學院

  • and figured, you know what, somebody else will solve this problem.

    攻讀電腦科學學士學位時

  • Not too long after,

    我研究社交機器人

  • I was in Hong Kong for an entrepreneurship competition.

    其中的一個實驗

  • The organizers decided to take participants

    就是和機器人玩躲貓貓

  • on a tour of local start-ups.

    這個簡單的互動遊戲

  • One of the start-ups had a social robot,

    讓對手先遮住臉再放開

  • and they decided to do a demo.

    同時要說 peek-a-boo

  • The demo worked on everybody until it got to me,

    問題是如果看不到對方

  • and you can probably guess it.

    遊戲就玩不下去了

  • It couldn't detect my face.

    我的機器人就是看不到我

  • I asked the developers what was going on,

    最後我只好借我室友的臉來完成

  • and it turned out we had used the same generic facial recognition software.

    做完實驗時我想

  • Halfway around the world,

    總有一天會有別人解決這個問題

  • I learned that algorithmic bias can travel as quickly

    不久之後

  • as it takes to download some files off of the internet.

    我去香港參加一個

  • So what's going on? Why isn't my face being detected?

    業界舉辦的競技比賽

  • Well, we have to look at how we give machines sight.

    主辦單位先帶每位參賽者

  • Computer vision uses machine learning techniques

    去參觀當地的新創市場

  • to do facial recognition.

    其中一項就是社交機器人

  • So how this works is, you create a training set with examples of faces.

    當他們用社交機器人展示成果時

  • This is a face. This is a face. This is not a face.

    社交機器人對每個參賽者都有反應

  • And over time, you can teach a computer how to recognize other faces.

    直到遇到了我

  • However, if the training sets aren't really that diverse,

    接下來的情形你應該能想像

  • any face that deviates too much from the established norm

    社交機器人怎樣都偵測不到我的臉

  • will be harder to detect,

    我問軟體開發人員是怎麼一回事

  • which is what was happening to me.

    才驚覺當年通用的

  • But don't worry -- there's some good news.

    人臉辨識軟體

  • Training sets don't just materialize out of nowhere.

    竟然飄洋過海到了香港

  • We actually can create them.

    偏差的演算邏輯快速散播

  • So there's an opportunity to create full-spectrum training sets

    只要從網路下載幾個檔案就搞定了

  • that reflect a richer portrait of humanity.

    為什麼機器人就是看不見我的臉?

  • Now you've seen in my examples

    得先知道我們如何賦予機器視力

  • how social robots

    電腦使用機器學習的技術

  • was how I found out about exclusion with algorithmic bias.

    來辨識人臉

  • But algorithmic bias can also lead to discriminatory practices.

    你必須用許多實作測試來訓練他們

  • Across the US,

    這是人臉這是人臉這是人臉

  • police departments are starting to use facial recognition software

    這不是人臉

  • in their crime-fighting arsenal.

    一而再再而三你就能教機器人

  • Georgetown Law published a report

    辨識其他的人臉

  • showing that one in two adults in the US -- that's 117 million people --

    但是如果實作測試不夠多樣化

  • have their faces in facial recognition networks.

    當出現的人臉

  • Police departments can currently look at these networks unregulated,

    與既定規範相去太遠時

  • using algorithms that have not been audited for accuracy.

    電腦就很難判斷了

  • Yet we know facial recognition is not fail proof,

    我的親身經驗就是這樣

  • and labeling faces consistently remains a challenge.

    但別慌張 有好消息

  • You might have seen this on Facebook.

    實作測試並不是無中生有

  • My friends and I laugh all the time when we see other people

    事實上我們能夠建的

  • mislabeled in our photos.

    我們可以有一套更周詳的測試樣本

  • But misidentifying a suspected criminal is no laughing matter,

    涵蓋人種的多樣性

  • nor is breaching civil liberties.

    我的實驗說明了

  • Machine learning is being used for facial recognition,

    社交機器人

  • but it's also extending beyond the realm of computer vision.

    產生排他現象

  • In her book, "Weapons of Math Destruction,"

    因為偏差的演算邏輯

  • data scientist Cathy O'Neil talks about the rising new WMDs --

    偏差的演算邏輯

  • widespread, mysterious and destructive algorithms

    也可能讓偏見成為一種習慣

  • that are increasingly being used to make decisions

    美國各地的警方

  • that impact more aspects of our lives.

    正開始使用這套人臉辨識軟體

  • So who gets hired or fired?

    來建立警方的打擊犯罪系統

  • Do you get that loan? Do you get insurance?

    喬治城大學法律中心的報告指出

  • Are you admitted into the college you wanted to get into?

    每兩個美國成年人就有一個人

  • Do you and I pay the same price for the same product

    也就是一億一千七百萬筆臉部資料

  • purchased on the same platform?

    在美國警方這套系統裡

  • Law enforcement is also starting to use machine learning

    警方這套系統既缺乏規範

  • for predictive policing.

    也缺乏正確合法的演算邏輯

  • Some judges use machine-generated risk scores to determine

    你要知道人臉辨識並非萬無一失

  • how long an individual is going to spend in prison.

    要一貫正確地標註人臉 往往不是那麼容易

  • So we really have to think about these decisions.

    或許你在臉書上看過

  • Are they fair?

    朋友和我常覺得很好笑

  • And we've seen that algorithmic bias

    看見有人標註朋友卻標錯了

  • doesn't necessarily always lead to fair outcomes.

    如果標錯的是犯人的臉呢

  • So what can we do about it?

    那就讓人笑不出來了

  • Well, we can start thinking about how we create more inclusive code

    侵害公民自由也同樣讓人笑不出來

  • and employ inclusive coding practices.

    不僅辨識人臉倚賴機器學習的技術

  • It really starts with people.

    許多領域其實都要用到機器學習

  • So who codes matters.

    《大數據的傲慢與偏見》 這本書的作者

  • Are we creating full-spectrum teams with diverse individuals

    數據科學家凱西 歐尼爾

  • who can check each other's blind spots?

    談到新 WMD 勢力的崛起

  • On the technical side, how we code matters.

    WMD 是廣泛 神秘和具破壞性的算法

  • Are we factoring in fairness as we're developing systems?

    演算法漸漸取代我們做決定

  • And finally, why we code matters.

    影響我們生活的更多層面

  • We've used tools of computational creation to unlock immense wealth.

    例如誰升了官?誰丟了飯碗?

  • We now have the opportunity to unlock even greater equality

    你借到錢了嗎?你買保險了嗎?

  • if we make social change a priority

    你進入心目中理想的大學了嗎?

  • and not an afterthought.

    我們花同樣多的錢在同樣的平台上

  • And so these are the three tenets that will make up the "incoding" movement.

    買到同樣的產品嗎?

  • Who codes matters,

    警方也開始使用機器學習

  • how we code matters

    來防範犯罪

  • and why we code matters.

    法官根據電腦顯示的危險因子數據

  • So to go towards incoding, we can start thinking about

    來決定一個人要在監獄待幾年

  • building platforms that can identify bias

    我們得仔細想想這些判定

  • by collecting people's experiences like the ones I shared,

    它們真的公平嗎?

  • but also auditing existing software.

    我們親眼看見偏差的演算邏輯

  • We can also start to create more inclusive training sets.

    未必做出正確的判斷

  • Imagine a "Selfies for Inclusion" campaign

    我們該怎麽辦呢?

  • where you and I can help developers test and create

    我們要先確定程式碼是否具多樣性

  • more inclusive training sets.

    以及寫程式的過程是否周詳

  • And we can also start thinking more conscientiously

    事實上全都始於人

  • about the social impact of the technology that we're developing.

    程式是誰寫的有關係

  • To get the incoding movement started,

    寫程式的團隊是否由 多元的個體組成呢?

  • I've launched the Algorithmic Justice League,

    這樣才能互補並找出彼此的盲點

  • where anyone who cares about fairness can help fight the coded gaze.

    從技術面而言 我們如何寫程式很重要

  • On codedgaze.com, you can report bias,

    我們是否對公平這項要素

  • request audits, become a tester

    在系統開發階段就考量到呢?

  • and join the ongoing conversation,

    最後 我們為什麼寫程式也重要

  • #codedgaze.

    我們使用計算創造工具 開啟了巨額財富之門

  • So I invite you to join me

    我們現在有機會實現更大的平等

  • in creating a world where technology works for all of us,

    如果我們將社會變革作為優先事項

  • not just some of us,

    而不是事後的想法

  • a world where we value inclusion and center social change.

    這裡有改革程式的三元素

  • Thank you.

    程式是誰寫的重要

  • (Applause)

    如何寫程式重要

  • But I have one question:

    以及為何寫程式重要

  • Will you join me in the fight?

    要成功改革程式

  • (Laughter)

    我們可以先從建立能夠 找出偏差的分析平台開始

  • (Applause)

    作法是收集人們的親身經歷 像是我剛才分享的經歷

Hello, I'm Joy, a poet of code,

譯者: Suzie Tang 審譯者: Helen Chang

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 程式 演算 機器人 辨識 邏輯

【TED】Joy Buolamwini:我如何對抗算法中的偏見(我如何對抗算法中的偏見|Joy Buolamwini)。 (【TED】Joy Buolamwini: How I'm fighting bias in algorithms (How I'm fighting bias in algorithms | Joy Buolamwini))

  • 25 4
    Zenn 發佈於 2021 年 01 月 14 日
影片單字