字幕列表 影片播放
Today, I'm going to talk about AI and us.
譯者: Judy Wan-Ling CHEN 審譯者: Wilde Luo
AI researchers have always said
今天我要跟大家聊聊 「人工智慧與你我」,
that we humans do not need to worry,
人工智慧研究專家常說,
because only menial jobs will be taken over by machines.
人類不需要擔心,
Is that really true?
因為機器只會取代那些 乏味枯燥的粗活。
They have also said that AI will create new jobs,
是真的嗎?
so those who lose their jobs will find a new one.
他們也說過人工智慧 可以創造新的工作,
Of course.
因此那些失業的人還是可以再就業。
But the real question is:
當然。
How many of those who may lose their jobs to AI
只是問題的癥結是:
will be able to land a new one,
多少人因為人工智慧失業後
especially when AI is smart enough to learn better than most of us?
能夠真的找到新的工作,
Let me ask you a question:
尤其當人工智慧已經成熟到 比大多數人都能更有效率地學習?
How many of you think
讓我問你們一個問題:
that AI will pass the entrance examination of a top university by 2020?
你們之中認為在 2020 年之前
Oh, so many. OK.
人工智慧將可以通過 頂尖大學的入學測驗的人,請舉手。
So some of you may say, "Of course, yes!"
哇,好多。好的。
Now singularity is the issue.
相當多人會認為:「那當然!」
And some others may say, "Maybe,
現在「人工智慧的奇點」 是個熱門話題。
because AI already won against a top Go player."
也有很多人會說:「有可能,
And others may say, "No, never. Uh-uh."
人工智慧都已經打敗過 世界頂尖的圍棋高手了。」
That means we do not know the answer yet, right?
也有一些人持不同看法: 「絕對不可能。嗯,就是這樣。」
So that was the reason why I started Todai Robot Project,
這說明了我們其實還沒有 真正的答案,不是嗎?
making an AI which passes the entrance examination
這就是我啟動 「東大機器人計畫」的始末,
of the University of Tokyo,
打造一個人工智慧機器人,
the top university in Japan.
通過東京大學的入學考,
This is our Todai Robot.
東大是全日本最頂尖的學府。
And, of course, the brain of the robot is working in the remote server.
為您介紹東大機器人。
It is now writing a 600-word essay
當然,它正接受遠端伺服器遙控著。
on maritime trade in the 17th century.
正在寫一篇 600 字的論文,
How does that sound?
闡述 17 世紀的海上貿易。
Why did I take the entrance exam as its benchmark?
聽起來如何?
Because I thought we had to study the performance of AI
為什麼當初要將入學考試 作為一個標竿?
in comparison to humans,
因為我想,我們有必要研究人工智慧
especially on the skills and expertise
相較人類的表現,
which are believed to be acquired only by humans
尤其那些有規模 跟特殊性的專長領域,
and only through education.
向來我們都相信 這些技能和知識惟有人類
To enter Todai, the University of Tokyo,
透過教育才能獲得。
you have to pass two different types of exams.
要考上日本的 第一學府,東京大學,
The first one is a national standardized test
必須通過兩項測驗。
in multiple-choice style.
第一個是日本高考, 全國標準化的測驗,
You have to take seven subjects
全選擇題的題型。
and achieve a high score --
你必須在七大科目中
I would say like an 85 percent or more accuracy rate --
都獲得高分——
to be allowed to take the second stage written test
大概要達到 85% 以上的正確率——
prepared by Todai.
才可以獲准進入第二階段筆試,
So let me first explain how modern AI works,
由東大命題。
taking the "Jeopardy!" challenge as an example.
先讓我說明一下 當代的人工智慧運作的方式,
Here is a typical "Jeopardy!" question:
舉一個 「Jeopardy!」 《危險邊緣》 的例子。
"Mozart's last symphony shares its name with this planet."
典型的一道題目如下:
Interestingly, a "Jeopardy!" question always asks,
「莫札特最後創作的交響曲 跟這個星球同名。」
always ends with "this" something:
有趣的是,
"this" planet, "this" country,
《危險邊緣》的例子總是有
"this" rock musician, and so on.
「這個」字眼在裡頭:
In other words, "Jeopardy!" doesn't ask many different types of questions,
「這個」星球、「這個」國家,
but a single type,
「這個」搖滾樂手 或「這個」什麼什麼。
which we call "factoid questions."
也就是說,《危險邊緣》 沒有太多類型的題目,
By the way, do you know the answer?
幾乎只有這一類,
If you do not know the answer and if you want to know the answer,
我們稱作「趣味小問題」。
what would you do?
有沒有人剛好知道答案呀?
You Google, right? Of course.
假如我們不知道答案, 但是又想要知道,
Why not?
怎麼辦?
But you have to pick appropriate keywords
當然是上網搜尋呀——
like "Mozart," "last" and "symphony" to search.
為甚麼不呢?
The machine basically does the same.
但要挑對關鍵字,
Then this Wikipedia page will be ranked top.
譬如輸入像「莫札特」、 「最後」跟「交響曲」去搜尋。
Then the machine reads the page.
基本上機器人也是這麼做。
No, uh-uh.
維基百科的頁面就會出現在最上頭。
Unfortunately, none of the modern AIs,
所以機器人就開始 「讀」這個頁面嗎?
including Watson, Siri and Todai Robot,
並不是喔──
is able to read.
不幸的是,所有當代的智慧機器人,
But they are very good at searching and optimizing.
無論是 IBM 的華生、蘋果的 Siri 或是東大機器人,
It will recognize
它們都沒有「閱讀」的能力。
that the keywords "Mozart," "last" and "symphony"
但是它們在搜尋跟 得到最佳化結果上很在行。
are appearing heavily around here.
它會找到關鍵字像是
So if it can find a word which is a planet
「莫札特」、「最後」 跟「交響曲」,
and which is co-occurring with these keywords,
重複地出現在這一帶。
that must be the answer.
接著繼續尋找屬於星球的詞彙,
This is how Watson finds the answer "Jupiter," in this case.
是跟前述這些關鍵字同時出現的,
Our Todai Robot works similarly, but a bit smarter
那鐵定就是答案了。
in answering history yes-no questions,
華生就是這樣找到「木星」的。
like, "'Charlemagne repelled the Magyars.' Is this sentence true or false?"
東大機器人的運作方式很接近, 但在回答歷史科目的
Our robot starts producing a factoid question,
判斷題上表現稍好,
like: "Charlemagne repelled [this person type]" by itself.
例如: 查理曼大帝擊敗馬札爾人,
Then, "Avars" but not "Magyars" is ranked top.
對還是錯?
This sentence is likely to be false.
機器人自動轉換為一道 趣味小問題,
Our robot does not read, does not understand,
變成:「 查理曼大帝 擊敗了這一種人」。
but it is statistically correct in many cases.
結果最上頭出現了「阿瓦爾人」 而非「馬札爾人」。
For the second stage written test,
所以這個陳述句很可能是錯誤的。
it is required to write a 600-word essay like this one:
機器人不會閱讀,也不了解,
[Discuss the rise and fall of the maritime trade
但從統計學角度評估, 卻具有高準確度。
in East and Southeast Asia in the 17th century ...]
至於第二階段的筆試,
and as I have shown earlier,
受測者必須寫一篇 600 字的論文,
our robot took the sentences from the textbooks and Wikipedia,
如這一道題:
combined them together,
(闡述 17 世紀時東亞與東南亞 海上貿易的興衰……)
and optimized it to produce an essay
如同我稍早展示過的,
without understanding a thing.
我們的機器人將教科書 與維基百科的句子
(Laughter)
併在一起,
But surprisingly, it wrote a better essay
優化後形成一篇文章,
than most of the students.
完全不懂字裡行間的意涵。
(Laughter)
(笑聲)
How about mathematics?
但是令人驚訝的是, 機器人這樣寫出來的文章,
A fully automatic math-solving machine
居然比大多數的學生好。
has been a dream
(笑聲)
since the birth of the word "artificial intelligence,"
那麼數學呢?
but it has stayed at the level of arithmetic for a long, long time.
能全自動處理數學問題的機器人,
Last year, we finally succeeded in developing a system
是大家都夢寐以求的,
which solved pre-university-level problems from end to end,
打從「人工智慧」的概念 問世以來就是如此。
like this one.
但是,它曾經 長期停滯在算術的階段。
This is the original problem written in Japanese,
去年我們總算成功發展一套系統,
and we had to teach it 2,000 mathematical axioms
可以從頭到尾地 解決中等教育程度的數學題目,
and 8,000 Japanese words
像這一題。
to make it accept the problems written in natural language.
原文是日文。
And it is now translating the original problems
我們必須先教會機器人 2,000 個數學公理,
into machine-readable formulas.
與 8,000 個日文字,
Weird, but it is now ready to solve it, I think.
才能讓機器人 看懂原文的數學題目。
Go and solve it.
它現在正在翻譯原來的題目
Yes! It is now executing symbolic computation.
成為機器人的語言。
Even more weird,
很怪,不過應該可以開始計算了。
but probably this is the most fun part for the machine.
開始解題。
(Laughter)
沒錯!它正在進行符號運算。
Now it outputs a perfect answer,
更怪了,
though its proof is impossible to read, even for mathematicians.
但或許機器人會覺得這個才好玩。
Anyway, last year our robot was among the top one percent
(笑聲)
in the second stage written exam in mathematics.
好了,它產出了一個完美的解。
(Applause)
儘管連數學家都證實了, 完全沒有人看得懂。
Thank you.
無論如何,去年我們的機器人 在第二階段的數學表現中
So, did it enter Todai?
被歸類在排名前 1% 高分的群組中。
No, not as I expected.
(掌聲)
Why?
謝謝。
Because it doesn't understand any meaning.
所以它最終有沒有考上東大呢?
Let me show you a typical error it made in the English test.
它並沒有如預期的金榜題名。
[Nate: We're almost at the bookstore. Just a few more minutes.
為什麼?
Sunil: Wait. ______ . Nate: Thank you! That always happens ...]
因為它根本什麼也不懂。
Two people are talking.
讓我展示一個在英文科的典型錯誤。
For us, who can understand the situation --
(奈特:我們快到書店了, 再過幾分鐘就到了。
[1. "We walked for a long time." 2. "We're almost there."
桑妮:等一下。______。 奈特:謝謝!每次都這樣……)
3. "Your shoes look expensive." 4. "Your shoelace is untied."]
兩個人在對話。
it is obvious number four is the correct answer, right?
我們都明白發生了什麽——
But Todai Robot chose number two,
(選項:1. 我們走了很久的路 2. 我們幾乎快到了
even after learning 15 billion English sentences
3. 你的鞋子看起來好昂貴 4. 你的鞋帶鬆了)
using deep learning technologies.
很明顯地,標準答案 是選 4,同意嗎?
OK, so now you might understand what I said:
可是東大機器人選 2,
modern AIs do not read,
就算已經學習了 150 億個英文詞句,
do not understand.
還透過深度學習技術。
They only disguise as if they do.
好吧,現在你可能明白我所說的:
This is the distribution graph
當代人工智慧沒有辦法閱讀,
of half a million students who took the same exam as Todai Robot.
不能理解。
Now our Todai Robot is among the top 20 percent,
它們只是佯裝成什麽都懂。
and it was capable to pass
這個分佈圖,
more than 60 percent of the universities in Japan --
代表跟東大機器人一起接受入學 考試的其他 50 萬名考生的成績。
but not Todai.
機器人排名其中的前 20%,
But see how it is beyond the volume zone
可以考進日本
of to-be white-collar workers.
超過六成的大學──
You might think I was delighted.
但就是考不上東大。
After all, my robot was surpassing students everywhere.
可是看看被它超越的廣大區塊,
Instead, I was alarmed.
所謂的白領階級。
How on earth could this unintelligent machine outperform students --
你可能會猜想我應該很開心。
our children?
畢竟我的機器人正在 全面性地超越學生。
Right?
其實不然,我很驚恐。
I decided to investigate what was going on in the human world.
這個一點都不聰明的機器人居然 表現得比學生們──
I took hundreds of sentences from high school textbooks
也是我們的孩子們,更好?
and made easy multiple-choice quizzes,
怎麼可以?
and asked thousands of high school students to answer.
我決定深入調查 人類世界究竟發生了什麼事。
Here is an example:
我收集了上百個 高中教科書裡頭的詞句,
[Buddhism spread to ... , Christianity to ... and Oceania,
然後編成簡單的選擇題測驗,
and Islam to ...]
讓上千位高中生接受測試。
Of course, the original problems are written in Japanese,
這是其中一個範例:
their mother tongue.
題目都是用他們的母語 ──日文寫的。
[ ______ has spread to Oceania.
(題目:______傳播到了大洋洲。
1. Hinduism 2. Christianity 3. Islam 4. Buddhism ]
1. 印度教 2. 基督教 3. 伊斯蘭教 4. 佛教)
Obviously, Christianity is the answer, isn't it?
顯而易見的答案是基督教,對吧?
It's written!
都包含在題目所給信息裡了。
And Todai Robot chose the correct answer, too.
東大機器人也選出了正確的答案。
But one-third of junior high school students
但是有三分之一的國中生
failed to answer this question.
無法回答這個問題。
Do you think it is only the case in Japan?
你以為這個問題只存在於日本嗎?
I do not think so,
我不這麼認為,
because Japan is always ranked among the top in OECD PISA tests,
日本總是在國際學生能力評估計劃 測驗中名列前茅。
measuring 15-year-old students' performance in mathematics,
那是一套衡量 15 歲青少年在數學、
science and reading
科學與閱讀素質的測驗,
every three years.
每三年考一次。
We have been believing
我們一直相信,
that everybody can learn
每個人都能學習,
and learn well,
並且學得出色,
as long as we provide good learning materials
只要我們提供高質量的學習資料,
free on the web
這些免費資源,
so that they can access through the internet.
讓他們透過網路取得使用。
But such wonderful materials may benefit only those who can read well,
但這些優質的資料 只會讓那些能夠有效閱讀的人受益,
and the percentage of those who can read well
而能夠有效閱讀的人所佔的比例,
may be much less than we expected.
可能遠低於我們的預期。
How we humans will coexist with AI
人類要如何與人工智慧共存
is something we have to think about carefully,
是我們要謹慎思考的課題,
based on solid evidence.
客觀考量各項可靠證據。
At the same time, we have to think in a hurry
同時,我們也要加緊腳步思考,
because time is running out.
因為所剩時間不多了。
Thank you.
謝謝。
(Applause)
(掌聲)
Chris Anderson: Noriko, thank you.
克里斯 · 安德森:紀子,謝謝你。
Noriko Arai: Thank you.
新井紀子:謝謝。
CA: In your talk, you so beautifully give us a sense of how AIs think,
克里斯:您方才向我們 說明了人工智慧的運作方式。
what they can do amazingly
它們可以完美勝任的,
and what they can't do.
以及無法勝任的工作。
But -- do I read you right,
但是,我的解讀是否是正確的,
that you think we really need quite an urgent revolution in education
你認為我們急需教育改革,
to help kids do the things that humans can do better than AIs?
以協助學子在特定的領域中 讓人工智慧難以望其項背?
NA: Yes, yes, yes.
紀子:是的。
Because we humans can understand the meaning.
因為我們人類可以理解意義。
That is something which is very, very lacking in AI.
而這在人工智慧中是相當缺乏的。
But most of the students just pack the knowledge
但是大多數的學生都只會囫圇吞棗,
without understanding the meaning of the knowledge,
而非深入理解知識,
so that is not knowledge, that is just memorizing,
這就只是單純記憶的動作,
and AI can do the same thing.
人工智慧也辦得到。
So we have to think about a new type of education.
所以我們應該要思考新型態的教育。
CA: A shift from knowledge, rote knowledge, to meaning.
克里斯:從「死記硬背」 到「深入理解」的轉變。
NA: Mm-hmm.
紀子:嗯嗯嗯。
CA: Well, there's a challenge for the educators. Thank you so much.
克里斯:我想這是給 教育家的一大挑戰,
NA: Thank you very much. Thank you.
再次感謝您。
(Applause)
紀子:謝謝,非常謝謝你們。