字幕列表 影片播放
-
Today, I'm going to talk about AI and us.
譯者: Judy Wan-Ling CHEN 審譯者: Wilde Luo
-
AI researchers have always said
今天我要跟大家聊聊 「人工智慧與你我」,
-
that we humans do not need to worry,
人工智慧研究專家常說,
-
because only menial jobs will be taken over by machines.
人類不需要擔心,
-
Is that really true?
因為機器只會取代那些 乏味枯燥的粗活。
-
They have also said that AI will create new jobs,
是真的嗎?
-
so those who lose their jobs will find a new one.
他們也說過人工智慧 可以創造新的工作,
-
Of course.
因此那些失業的人還是可以再就業。
-
But the real question is:
當然。
-
How many of those who may lose their jobs to AI
只是問題的癥結是:
-
will be able to land a new one,
多少人因為人工智慧失業後
-
especially when AI is smart enough to learn better than most of us?
能夠真的找到新的工作,
-
Let me ask you a question:
尤其當人工智慧已經成熟到 比大多數人都能更有效率地學習?
-
How many of you think
讓我問你們一個問題:
-
that AI will pass the entrance examination of a top university by 2020?
你們之中認為在 2020 年之前
-
Oh, so many. OK.
人工智慧將可以通過 頂尖大學的入學測驗的人,請舉手。
-
So some of you may say, "Of course, yes!"
哇,好多。好的。
-
Now singularity is the issue.
相當多人會認為:「那當然!」
-
And some others may say, "Maybe,
現在「人工智慧的奇點」 是個熱門話題。
-
because AI already won against a top Go player."
也有很多人會說:「有可能,
-
And others may say, "No, never. Uh-uh."
人工智慧都已經打敗過 世界頂尖的圍棋高手了。」
-
That means we do not know the answer yet, right?
也有一些人持不同看法: 「絕對不可能。嗯,就是這樣。」
-
So that was the reason why I started Todai Robot Project,
這說明了我們其實還沒有 真正的答案,不是嗎?
-
making an AI which passes the entrance examination
這就是我啟動 「東大機器人計畫」的始末,
-
of the University of Tokyo,
打造一個人工智慧機器人,
-
the top university in Japan.
通過東京大學的入學考,
-
This is our Todai Robot.
東大是全日本最頂尖的學府。
-
And, of course, the brain of the robot is working in the remote server.
為您介紹東大機器人。
-
It is now writing a 600-word essay
當然,它正接受遠端伺服器遙控著。
-
on maritime trade in the 17th century.
正在寫一篇 600 字的論文,
-
How does that sound?
闡述 17 世紀的海上貿易。
-
Why did I take the entrance exam as its benchmark?
聽起來如何?
-
Because I thought we had to study the performance of AI
為什麼當初要將入學考試 作為一個標竿?
-
in comparison to humans,
因為我想,我們有必要研究人工智慧
-
especially on the skills and expertise
相較人類的表現,
-
which are believed to be acquired only by humans
尤其那些有規模 跟特殊性的專長領域,
-
and only through education.
向來我們都相信 這些技能和知識惟有人類
-
To enter Todai, the University of Tokyo,
透過教育才能獲得。
-
you have to pass two different types of exams.
要考上日本的 第一學府,東京大學,
-
The first one is a national standardized test
必須通過兩項測驗。
-
in multiple-choice style.
第一個是日本高考, 全國標準化的測驗,
-
You have to take seven subjects
全選擇題的題型。
-
and achieve a high score --
你必須在七大科目中
-
I would say like an 85 percent or more accuracy rate --
都獲得高分——
-
to be allowed to take the second stage written test
大概要達到 85% 以上的正確率——
-
prepared by Todai.
才可以獲准進入第二階段筆試,
-
So let me first explain how modern AI works,
由東大命題。
-
taking the "Jeopardy!" challenge as an example.
先讓我說明一下 當代的人工智慧運作的方式,
-
Here is a typical "Jeopardy!" question:
舉一個 「Jeopardy!」 《危險邊緣》 的例子。
-
"Mozart's last symphony shares its name with this planet."
典型的一道題目如下:
-
Interestingly, a "Jeopardy!" question always asks,
「莫札特最後創作的交響曲 跟這個星球同名。」
-
always ends with "this" something:
有趣的是,
-
"this" planet, "this" country,
《危險邊緣》的例子總是有
-
"this" rock musician, and so on.
「這個」字眼在裡頭:
-
In other words, "Jeopardy!" doesn't ask many different types of questions,
「這個」星球、「這個」國家,
-
but a single type,
「這個」搖滾樂手 或「這個」什麼什麼。
-
which we call "factoid questions."
也就是說,《危險邊緣》 沒有太多類型的題目,
-
By the way, do you know the answer?
幾乎只有這一類,
-
If you do not know the answer and if you want to know the answer,
我們稱作「趣味小問題」。
-
what would you do?
有沒有人剛好知道答案呀?
-
You Google, right? Of course.
假如我們不知道答案, 但是又想要知道,
-
Why not?
怎麼辦?
-
But you have to pick appropriate keywords
當然是上網搜尋呀——
-
like "Mozart," "last" and "symphony" to search.
為甚麼不呢?
-
The machine basically does the same.
但要挑對關鍵字,
-
Then this Wikipedia page will be ranked top.
譬如輸入像「莫札特」、 「最後」跟「交響曲」去搜尋。
-
Then the machine reads the page.
基本上機器人也是這麼做。
-
No, uh-uh.
維基百科的頁面就會出現在最上頭。
-
Unfortunately, none of the modern AIs,
所以機器人就開始 「讀」這個頁面嗎?
-
including Watson, Siri and Todai Robot,
並不是喔──
-
is able to read.
不幸的是,所有當代的智慧機器人,
-
But they are very good at searching and optimizing.
無論是 IBM 的華生、蘋果的 Siri 或是東大機器人,
-
It will recognize
它們都沒有「閱讀」的能力。
-
that the keywords "Mozart," "last" and "symphony"
但是它們在搜尋跟 得到最佳化結果上很在行。
-
are appearing heavily around here.
它會找到關鍵字像是
-
So if it can find a word which is a planet
「莫札特」、「最後」 跟「交響曲」,
-
and which is co-occurring with these keywords,
重複地出現在這一帶。
-
that must be the answer.
接著繼續尋找屬於星球的詞彙,
-
This is how Watson finds the answer "Jupiter," in this case.
是跟前述這些關鍵字同時出現的,
-
Our Todai Robot works similarly, but a bit smarter
那鐵定就是答案了。
-
in answering history yes-no questions,
華生就是這樣找到「木星」的。
-
like, "'Charlemagne repelled the Magyars.' Is this sentence true or false?"
東大機器人的運作方式很接近, 但在回答歷史科目的
-
Our robot starts producing a factoid question,
判斷題上表現稍好,
-
like: "Charlemagne repelled [this person type]" by itself.
例如: 查理曼大帝擊敗馬札爾人,
-
Then, "Avars" but not "Magyars" is ranked top.
對還是錯?
-
This sentence is likely to be false.
機器人自動轉換為一道 趣味小問題,
-
Our robot does not read, does not understand,
變成:「 查理曼大帝 擊敗了這一種人」。
-
but it is statistically correct in many cases.
結果最上頭出現了「阿瓦爾人」 而非「馬札爾人」。
-
For the second stage written test,
所以這個陳述句很可能是錯誤的。
-
it is required to write a 600-word essay like this one:
機器人不會閱讀,也不了解,
-
[Discuss the rise and fall of the maritime trade
但從統計學角度評估, 卻具有高準確度。
-
in East and Southeast Asia in the 17th century ...]
至於第二階段的筆試,
-
and as I have shown earlier,
受測者必須寫一篇 600 字的論文,
-
our robot took the sentences from the textbooks and Wikipedia,
如這一道題:
-
combined them together,
(闡述 17 世紀時東亞與東南亞 海上貿易的興衰……)
-
and optimized it to produce an essay
如同我稍早展示過的,
-
without understanding a thing.
我們的機器人將教科書 與維基百科的句子
-
(Laughter)
併在一起,
-
But surprisingly, it wrote a better essay
優化後形成一篇文章,
-
than most of the students.
完全不懂字裡行間的意涵。
-
(Laughter)
(笑聲)
-
How about mathematics?
但是令人驚訝的是, 機器人這樣寫出來的文章,
-
A fully automatic math-solving machine
居然比大多數的學生好。
-
has been a dream
(笑聲)
-
since the birth of the word "artificial intelligence,"
那麼數學呢?
-
but it has stayed at the level of arithmetic for a long, long time.
能全自動處理數學問題的機器人,
-
Last year, we finally succeeded in developing a system
是大家都夢寐以求的,
-
which solved pre-university-level problems from end to end,
打從「人工智慧」的概念 問世以來就是如此。
-
like this one.
但是,它曾經 長期停滯在算術的階段。
-
This is the original problem written in Japanese,
去年我們總算成功發展一套系統,
-
and we had to teach it 2,000 mathematical axioms
可以從頭到尾地 解決中等教育程度的數學題目,
-
and 8,000 Japanese words
像這一題。
-
to make it accept the problems written in natural language.
原文是日文。
-
And it is now translating the original problems
我們必須先教會機器人 2,000 個數學公理,
-
into machine-readable formulas.
與 8,000 個日文字,
-
Weird, but it is now ready to solve it, I think.
才能讓機器人 看懂原文的數學題目。
-
Go and solve it.
它現在正在翻譯原來的題目
-
Yes! It is now executing symbolic computation.
成為機器人的語言。
-
Even more weird,
很怪,不過應該可以開始計算了。
-
but probably this is the most fun part for the machine.
開始解題。
-
(Laughter)
沒錯!它正在進行符號運算。
-
Now it outputs a perfect answer,
更怪了,
-
though its proof is impossible to read, even for mathematicians.
但或許機器人會覺得這個才好玩。
-
Anyway, last year our robot was among the top one percent
(笑聲)
-
in the second stage written exam in mathematics.
好了,它產出了一個完美的解。
-
(Applause)
儘管連數學家都證實了, 完全沒有人看得懂。
-
Thank you.
無論如何,去年我們的機器人 在第二階段的數學表現中
-
So, did it enter Todai?
被歸類在排名前 1% 高分的群組中。
-
No, not as I expected.
(掌聲)
-
Why?
謝謝。
-
Because it doesn't understand any meaning.
所以它最終有沒有考上東大呢?
-
Let me show you a typical error it made in the English test.
它並沒有如預期的金榜題名。
-
[Nate: We're almost at the bookstore. Just a few more minutes.
為什麼?
-
Sunil: Wait. ______ . Nate: Thank you! That always happens ...]
因為它根本什麼也不懂。
-
Two people are talking.
讓我展示一個在英文科的典型錯誤。
-
For us, who can understand the situation --
(奈特:我們快到書店了, 再過幾分鐘就到了。
-
[1. "We walked for a long time." 2. "We're almost there."
桑妮:等一下。______。 奈特:謝謝!每次都這樣……)
-
3. "Your shoes look expensive." 4. "Your shoelace is untied."]
兩個人在對話。
-
it is obvious number four is the correct answer, right?
我們都明白發生了什麽——
-
But Todai Robot chose number two,
(選項:1. 我們走了很久的路 2. 我們幾乎快到了
-
even after learning 15 billion English sentences
3. 你的鞋子看起來好昂貴 4. 你的鞋帶鬆了)
-
using deep learning technologies.
很明顯地,標準答案 是選 4,同意嗎?
-
OK, so now you might understand what I said:
可是東大機器人選 2,
-
modern AIs do not read,
就算已經學習了 150 億個英文詞句,
-
do not understand.
還透過深度學習技術。
-
They only disguise as if they do.
好吧,現在你可能明白我所說的:
-
This is the distribution graph
當代人工智慧沒有辦法閱讀,
-
of half a million students who took the same exam as Todai Robot.
不能理解。
-
Now our Todai Robot is among the top 20 percent,
它們只是佯裝成什麽都懂。
-
and it was capable to pass
這個分佈圖,
-
more than 60 percent of the universities in Japan --
代表跟東大機器人一起接受入學 考試的其他 50 萬名考生的成績。
-
but not Todai.
機器人排名其中的前 20%,
-
But see how it is beyond the volume zone
可以考進日本
-
of to-be white-collar workers.
超過六成的大學──
-
You might think I was delighted.
但就是考不上東大。
-
After all, my robot was surpassing students everywhere.
可是看看被它超越的廣大區塊,
-
Instead, I was alarmed.
所謂的白領階級。
-
How on earth could this unintelligent machine outperform students --
你可能會猜想我應該很開心。
-
our children?
畢竟我的機器人正在 全面性地超越學生。
-
Right?
其實不然,我很驚恐。
-
I decided to investigate what was going on in the human world.
這個一點都不聰明的機器人居然 表現得比學生們──
-
I took hundreds of sentences from high school textbooks
也是我們的孩子們,更好?
-
and made easy multiple-choice quizzes,
怎麼可以?
-
and asked thousands of high school students to answer.
我決定深入調查 人類世界究竟發生了什麼事。
-
Here is an example:
我收集了上百個 高中教科書裡頭的詞句,
-
[Buddhism spread to ... , Christianity to ... and Oceania,
然後編成簡單的選擇題測驗,
-
and Islam to ...]
讓上千位高中生接受測試。
-
Of course, the original problems are written in Japanese,
這是其中一個範例:
-
their mother tongue.
題目都是用他們的母語 ──日文寫的。
-
[ ______ has spread to Oceania.
(題目:______傳播到了大洋洲。
-
1. Hinduism 2. Christianity 3. Islam 4. Buddhism ]
1. 印度教 2. 基督教 3. 伊斯蘭教 4. 佛教)
-
Obviously, Christianity is the answer, isn't it?
顯而易見的答案是基督教,對吧?
-
It's written!
都包含在題目所給信息裡了。
-
And Todai Robot chose the correct answer, too.
東大機器人也選出了正確的答案。
-
But one-third of junior high school students
但是有三分之一的國中生
-
failed to answer this question.
無法回答這個問題。
-
Do you think it is only the case in Japan?
你以為這個問題只存在於日本嗎?
-
I do not think so,
我不這麼認為,
-
because Japan is always ranked among the top in OECD PISA tests,
日本總是在國際學生能力評估計劃 測驗中名列前茅。
-
measuring 15-year-old students' performance in mathematics,
那是一套衡量 15 歲青少年在數學、
-
science and reading
科學與閱讀素質的測驗,
-
every three years.
每三年考一次。
-
We have been believing
我們一直相信,
-
that everybody can learn
每個人都能學習,
-
and learn well,
並且學得出色,
-
as long as we provide good learning materials
只要我們提供高質量的學習資料,
-
free on the web
這些免費資源,
-
so that they can access through the internet.
讓他們透過網路取得使用。
-
But such wonderful materials may benefit only those who can read well,
但這些優質的資料 只會讓那些能夠有效閱讀的人受益,
-
and the percentage of those who can read well
而能夠有效閱讀的人所佔的比例,
-
may be much less than we expected.
可能遠低於我們的預期。
-
How we humans will coexist with AI
人類要如何與人工智慧共存
-
is something we have to think about carefully,
是我們要謹慎思考的課題,
-
based on solid evidence.
客觀考量各項可靠證據。
-
At the same time, we have to think in a hurry
同時,我們也要加緊腳步思考,
-
because time is running out.
因為所剩時間不多了。
-
Thank you.
謝謝。
-
(Applause)
(掌聲)
-
Chris Anderson: Noriko, thank you.
克里斯 · 安德森:紀子,謝謝你。
-
Noriko Arai: Thank you.
新井紀子:謝謝。
-
CA: In your talk, you so beautifully give us a sense of how AIs think,
克里斯:您方才向我們 說明了人工智慧的運作方式。
-
what they can do amazingly
它們可以完美勝任的,
-
and what they can't do.
以及無法勝任的工作。
-
But -- do I read you right,
但是,我的解讀是否是正確的,
-
that you think we really need quite an urgent revolution in education
你認為我們急需教育改革,
-
to help kids do the things that humans can do better than AIs?
以協助學子在特定的領域中 讓人工智慧難以望其項背?
-
NA: Yes, yes, yes.
紀子:是的。
-
Because we humans can understand the meaning.
因為我們人類可以理解意義。
-
That is something which is very, very lacking in AI.
而這在人工智慧中是相當缺乏的。
-
But most of the students just pack the knowledge
但是大多數的學生都只會囫圇吞棗,
-
without understanding the meaning of the knowledge,
而非深入理解知識,
-
so that is not knowledge, that is just memorizing,
這就只是單純記憶的動作,
-
and AI can do the same thing.
人工智慧也辦得到。
-
So we have to think about a new type of education.
所以我們應該要思考新型態的教育。
-
CA: A shift from knowledge, rote knowledge, to meaning.
克里斯:從「死記硬背」 到「深入理解」的轉變。
-
NA: Mm-hmm.
紀子:嗯嗯嗯。
-
CA: Well, there's a challenge for the educators. Thank you so much.
克里斯:我想這是給 教育家的一大挑戰,
-
NA: Thank you very much. Thank you.
再次感謝您。
-
(Applause)
紀子:謝謝,非常謝謝你們。