Placeholder Image

字幕列表 影片播放

  • For the next 16 minutes, I'm going to take you on a journey

    譯者: 易帆 余 審譯者: Jianan(Tiana) Zhao

  • that is probably the biggest dream of humanity:

    接下來的16分鐘, 我要帶各位進行一段冒險之旅,

  • to understand the code of life.

    這大概是人類最大的夢想:

  • So for me, everything started many, many years ago

    了解生命的密碼。

  • when I met the first 3D printer.

    對我而言,這一切的開始, 要拉回到好幾好幾年前,

  • The concept was fascinating.

    當我第一次遇上3D印表機時。

  • A 3D printer needs three elements:

    它的概念真的很棒。

  • a bit of information, some raw material, some energy,

    3D印表機需要三個元素:

  • and it can produce any object that was not there before.

    少量的資訊、一些原物料、 再加上點能量,

  • I was doing physics, I was coming back home

    這樣它就可以製造出 以前從未存在過的任何東西。

  • and I realized that I actually always knew a 3D printer.

    我當時研究的是物理學, 有天回到家裡時,

  • And everyone does.

    我突然意識到,我家裡 就有一台 3D 印表機。

  • It was my mom.

    而且每個人家裡都有一台。

  • (Laughter)

    那就是我媽嗎。

  • My mom takes three elements:

    (笑聲)

  • a bit of information, which is between my father and my mom in this case,

    我媽也有三個元素:

  • raw elements and energy in the same media, that is food,

    少量的資訊:我這個例子, 指的是我媽跟我爸之間的投入,

  • and after several months, produces me.

    食物就是原物料及能量的來源,

  • And I was not existent before.

    然後,幾個月後,生下了我。

  • So apart from the shock of my mom discovering that she was a 3D printer,

    而我以前也是不存的。

  • I immediately got mesmerized by that piece,

    所以,除了我發現我媽 就是一台3D列印機之外,

  • the first one, the information.

    我突然間也被 這個吸引注了,

  • What amount of information does it take

    那邊的第一項,資訊。

  • to build and assemble a human?

    要有多少這樣的資訊

  • Is it much? Is it little?

    才能建構並組裝出一個人來呢?

  • How many thumb drives can you fill?

    要很多嗎?還是只要一點點?

  • Well, I was studying physics at the beginning

    要多少隨身碟存取這些資訊呢?

  • and I took this approximation of a human as a gigantic Lego piece.

    我一開始是研究物理學的,

  • So, imagine that the building blocks are little atoms

    我喜歡把人類比喻成 一個大型的樂高玩具,

  • and there is a hydrogen here, a carbon here, a nitrogen here.

    你可以想像,每一個 樂高積木就是一個原子,

  • So in the first approximation,

    氫原子在這,碳原子在這, 氮原子在這。

  • if I can list the number of atoms that compose a human being,

    按照最初的估算想法,

  • I can build it.

    如果我可以列出 人類的原子清單的數量,

  • Now, you can run some numbers

    我就可以把它建造出來。

  • and that happens to be quite an astonishing number.

    現在,請各位算一下,

  • So the number of atoms,

    這想必是個驚人的數字。

  • the file that I will save in my thumb drive to assemble a little baby,

    所以,存在這隨身碟裡面

  • will actually fill an entire Titanic of thumb drives --

    可以組合出來一個小寶寶的檔案, 裡面的原子數數量,

  • multiplied 2,000 times.

    實際上若用樂高玩具 組裝起一個人類,

  • This is the miracle of life.

    它的大小足足有 2000台鐵達尼號這麼大。

  • Every time you see from now on a pregnant lady,

    這就是生命的奇蹟啊!

  • she's assembling the biggest amount of information

    從現在起,你每次 看到懷孕的婦女,

  • that you will ever encounter.

    她就是那個正在組裝

  • Forget big data, forget anything you heard of.

    你這輩子所遇到的最大量資訊。

  • This is the biggest amount of information that exists.

    忘了大數據吧! 忘了你曾聽過的。

  • (Applause)

    這就是現存的 最大數據資料。

  • But nature, fortunately, is much smarter than a young physicist,

    (笑聲)

  • and in four billion years, managed to pack this information

    但...好在大自然比一位 年輕的物理學家還聰明,

  • in a small crystal we call DNA.

    這40億年來,大自然中 負責管理包裹這個資訊的

  • We met it for the first time in 1950 when Rosalind Franklin,

    小晶體--我們稱之為DNA。

  • an amazing scientist, a woman,

    我們在1950年第一次認識了它,

  • took a picture of it.

    當時有一位了不起的女科學家 --羅莎琳.富蘭克林--

  • But it took us more than 40 years to finally poke inside a human cell,

    給 DNA 拍了張照。

  • take out this crystal,

    但我們花了40年的時間, 最後才戳進人類細胞裡

  • unroll it, and read it for the first time.

    取出這個晶體,

  • The code comes out to be a fairly simple alphabet,

    才首次把它伸展開來閱讀。

  • four letters: A, T, C and G.

    而密碼也就是大家所孰知的

  • And to build a human, you need three billion of them.

    四個字母:A、T、C、G。

  • Three billion.

    而建造一個人類, 你需要30億個字母。

  • How many are three billion?

    30億。

  • It doesn't really make any sense as a number, right?

    30億有多少?

  • So I was thinking how I could explain myself better

    我們對這個數字 真的很沒有概念,對吧?

  • about how big and enormous this code is.

    所以,我在想,這麼大的數字

  • But there is -- I mean, I'm going to have some help,

    我要怎麼解釋 才讓人比較容易了解。

  • and the best person to help me introduce the code

    但,我的意思是... 我最好找個人來幫忙,

  • is actually the first man to sequence it, Dr. Craig Venter.

    而能幫我介紹基因密碼 的最佳人選,

  • So welcome onstage, Dr. Craig Venter.

    想當然就是第一個定序的人, 克萊格.凡特博士。

  • (Applause)

    所以,讓我們歡迎 克萊格.凡特博士上台。

  • Not the man in the flesh,

    (掌聲)

  • but for the first time in history,

    當然不是活生生的人,

  • this is the genome of a specific human,

    但這是史上第一次

  • printed page-by-page, letter-by-letter:

    特定人類的基因組被

  • 262,000 pages of information,

    一頁接著一頁,一個字 接著一個字地列印出來:

  • 450 kilograms, shipped from the United States to Canada

    262,000頁的資料,

  • thanks to Bruno Bowden, Lulu.com, a start-up, did everything.

    450公斤、從美國運到加拿大,

  • It was an amazing feat.

    感謝新創公司Lulu.com的布魯諾.鮑登, 他們幫我做的這一切。

  • But this is the visual perception of what is the code of life.

    這是個很棒的饗宴。

  • And now, for the first time, I can do something fun.

    但這只是對生命密碼 的視覺感受。

  • I can actually poke inside it and read.

    現在,為了慶祝第一次, 我要做件有趣的事。

  • So let me take an interesting book ... like this one.

    我真的可以從裡面 挑一段來讀一讀。

  • I have an annotation; it's a fairly big book.

    所以,讓我來找一本有趣的.... 書兒,比如這本。

  • So just to let you see what is the code of life.

    我做了個註記;這書太厚了。

  • Thousands and thousands and thousands

    讓各位看一下甚麼是生命密碼。

  • and millions of letters.

    數以百萬、千萬、

  • And they apparently make sense.

    億個字母。

  • Let's get to a specific part.

    它們當然都有意義。

  • Let me read it to you:

    讓我來找一段特別的

  • (Laughter)

    讀給各位聽:

  • "AAG, AAT, ATA."

    (笑聲)

  • To you it sounds like mute letters,

    "AAG, AAT, ATA."

  • but this sequence gives the color of the eyes to Craig.

    你們可能覺得像是在聽天書,

  • I'll show you another part of the book.

    但這段序列,決定了 克萊格的眼睛顏色。

  • This is actually a little more complicated.

    我再展示另一段給各位看。

  • Chromosome 14, book 132:

    這段實際上稍微複雜些。

  • (Laughter)

    14 號染色體,第132 號書:

  • As you might expect.

    (笑聲)

  • (Laughter)

    如你所望!

  • "ATT, CTT, GATT."

    (笑聲)

  • This human is lucky,

    "ATT, CTT, GATT."

  • because if you miss just two letters in this position --

    這個人很幸運,

  • two letters of our three billion --

    因為如果你在這個位置 剛好漏掉兩個字母--

  • he will be condemned to a terrible disease:

    30億個字母,只漏掉兩個--

  • cystic fibrosis.

    你就等同於被宣判 得了一個恐佈的疾病:

  • We have no cure for it, we don't know how to solve it,

    囊性纖維化。

  • and it's just two letters of difference from what we are.

    目前我們沒有治療的方式, 我們不知道如何解決,

  • A wonderful book, a mighty book,

    僅僅就這兩個字母上 的差異而已。

  • a mighty book that helped me understand

    這本偉大的書,

  • and show you something quite remarkable.

    這本偉大的書,

  • Every one of you -- what makes me, me and you, you --

    可以幫助我了解,也能讓各位 看到一些嘆為觀止的事情。

  • is just about five million of these,

    在場的每一個人, 成就你我不同的地方

  • half a book.

    就這五百萬個 字母的差異,

  • For the rest,

    半本書。

  • we are all absolutely identical.

    剩下的,

  • Five hundred pages is the miracle of life that you are.

    我們絕對都長一樣。

  • The rest, we all share it.

    就是這 500 頁的字母, 行塑了你是甚麼樣的人,

  • So think about that again when we think that we are different.

    剩下的,我們都一樣。

  • This is the amount that we share.

    所以,當我們在討論彼此差異的時候, 讓我們再反思一下,

  • So now that I have your attention,

    其實我們共同的地方 真的有這麼多。

  • the next question is:

    所以,我問一下各位,

  • How do I read it?

    接下來的問題:

  • How do I make sense out of it?

    我要怎麼讀它?

  • Well, for however good you can be at assembling Swedish furniture,

    我要怎麼搞懂它?

  • this instruction manual is nothing you can crack in your life.

    其實,無論你多麼會 看說明書組裝瑞典的家具,

  • (Laughter)

    這本安裝手冊也沒辦法 教你如何破解你的人生。

  • And so, in 2014, two famous TEDsters,

    (笑聲)

  • Peter Diamandis and Craig Venter himself,

    2014年,兩位出名的 TED 演講者,

  • decided to assemble a new company.

    彼得.戴曼迪斯和 克雷格.文特爾本人,

  • Human Longevity was born,

    他們決定創立一家新公司。

  • with one mission:

    《人類長壽公司》誕生了,

  • trying everything we can try

    並賦予一個使命:

  • and learning everything we can learn from these books,

    竭盡所能的,

  • with one target --

    從這些書上,嘗試每樣東西, 學習每樣東西,

  • making real the dream of personalized medicine,

    就為了一個目標——

  • understanding what things should be done to have better health

    讓個人化醫療的美夢可以成真,

  • and what are the secrets in these books.

    了解需要做哪些事 才能更健康,

  • An amazing team, 40 data scientists and many, many more people,

    以及了解這些書 裡面的秘密。

  • a pleasure to work with.

    一個令人驚豔的團隊,40 個數據科學家, 還有其他很多、很多的人,

  • The concept is actually very simple.

    一起為團隊努力。

  • We're going to use a technology called machine learning.

    這概念其實很簡單。

  • On one side, we have genomes -- thousands of them.

    我們將要使用一種叫 「機械自主學習」的概念。

  • On the other side, we collected the biggest database of human beings:

    一方面,我們有 成千上萬的基因組——

  • phenotypes, 3D scan, NMR -- everything you can think of.

    另一方面,我們收集了 人類最大的資料庫:

  • Inside there, on these two opposite sides,

    生物特性、3D掃描、核磁共振—— 你能想到的每樣東西。

  • there is the secret of translation.

    這兩方面的資料, 被自主翻譯出來後

  • And in the middle, we build a machine.

    就可以解開很多的祕密。

  • We build a machine and we train a machine --

    在這兩個中間, 我們建立了一台機器。

  • well, not exactly one machine, many, many machines --

    我建立它,訓練它——

  • to try to understand and translate the genome in a phenotype.

    當然,並不只一台機器啦! 是很多很多台機器——

  • What are those letters, and what do they do?

    嘗試去了解並翻譯 基因組的生物特徵表象。

  • It's an approach that can be used for everything,

    這些字母代表甚麼? 它們有甚麼作用?

  • but using it in genomics is particularly complicated.

    這個方法可以運用在每件事上,

  • Little by little we grew and we wanted to build different challenges.

    但用在基因學上, 它就特別複雜。

  • We started from the beginning, from common traits.

    在一點一滴的慢慢累積後, 我們想建立不一樣的挑戰。

  • Common traits are comfortable because they are common,

    我們從共同的特徵開始。

  • everyone has them.

    談共同特徵比較輕鬆, 因為它們都很普遍。

  • So we started to ask our questions:

    每個人都有。

  • Can we predict height?

    我們從這個問題開始問:

  • Can we read the books and predict your height?

    我們可以預測身高嗎?

  • Well, we actually can,

    我們可以光看書 就可以知道你的身高嗎?

  • with five centimeters of precision.

    沒錯,我們真的可以,

  • BMI is fairly connected to your lifestyle,

    預測的誤差在五公分內。

  • but we still can, we get in the ballpark, eight kilograms of precision.

    身體質量指數與 你的生活形式有關,

  • Can we predict eye color?

    但我們仍然可以,相當精準地 將預測誤差控制在 8 公斤以內。

  • Yeah, we can.

    那我們可以預測眼睛顏色嗎?

  • Eighty percent accuracy.

    是的,我們可以。

  • Can we predict skin color?

    精準度高達80%。

  • Yeah we can, 80 percent accuracy.

    我們可以預測皮膚顏色嗎?

  • Can we predict age?

    是的,可以,80%的準確率。

  • We can, because apparently, the code changes during your life.

    年齡呢?

  • It gets shorter, you lose pieces, it gets insertions.

    可以,因為隨著年紀, 你的基因碼也會更著改變。

  • We read the signals, and we make a model.

    它會變短、消失或被插入。

  • Now, an interesting challenge:

    我們可以讀到那個訊號, 並把它模擬出來。

  • Can we predict a human face?

    現在,有一項有趣的挑戰:

  • It's a little complicated,

    我們可以預測一個人的臉嗎?

  • because a human face is scattered among millions of these letters.

    這有點複雜,

  • And a human face is not a very well-defined object.

    因為人臉上散播了 上百萬個這種字母。

  • So, we had to build an entire tier of it

    而人臉不太容易預測。

  • to learn and teach a machine what a face is,

    所以,我們必須建立一個 完整的堆疊系統,

  • and embed and compress it.

    去學習並教會機器 人臉是甚麼,

  • And if you're comfortable with machine learning,

    然後把它嵌進去並壓縮。

  • you understand what the challenge is here.

    如果你很懂機器自主學習,

  • Now, after 15 years -- 15 years after we read the first sequence --

    你會懂得這邊的挑戰是甚麼。

  • this October, we started to see some signals.

    15年後--整整15年後-- 我們讀取到第一個序列--

  • And it was a very emotional moment.

    今年10月,我們開始看到一些訊號。

  • What you see here is a subject coming in our lab.

    真的是令人感動的時刻。

  • This is a face for us.

    你現在看到的是一個 進來我們實驗室的實驗對象。

  • So we take the real face of a subject, we reduce the complexity,

    這是一個我們人類的臉。

  • because not everything is in your face --

    所以我們拿一個真實的臉當作實驗對象, 我們減少了複雜度,

  • lots of features and defects and asymmetries come from your life.

    因為不是每樣東西都會在 你的臉上原貌呈現出來--

  • We symmetrize the face, and we run our algorithm.

    有很多的特徵、缺陷及不對稱 來自於你後天的生活方式。

  • The results that I show you right now,

    我們把臉對稱好後, 拿去跑我們的演算法。

  • this is the prediction we have from the blood.

    我現在展示給各位看的結果,

  • (Applause)

    是由血液演算出來的預測結果。

  • Wait a second.

    (掌聲)

  • In these seconds, your eyes are watching, left and right, left and right,

    稍等一下。

  • and your brain wants those pictures to be identical.

    在這短短的幾秒鐘,你的眼睛會 左看看、右看看做比較,

  • So I ask you to do another exercise, to be honest.

    而你的大腦會希望 這些照片是一致的。

  • Please search for the differences,

    所以,我要求各位做另一項活動, 這次要誠實。

  • which are many.

    請找出他們不一樣的地方,

  • The biggest amount of signal comes from gender,

    有很多喔。

  • then there is age, BMI, the ethnicity component of a human.

    最多的訊號來自性別,

  • And scaling up over that signal is much more complicated.

    然後是年齡、身體質量指數、 人類種族族群。

  • But what you see here, even in the differences,

    把這些訊號擴大是相當複雜的。

  • lets you understand that we are in the right ballpark,

    但即使你現在看到有點不同,

  • that we are getting closer.

    還是要讓各位知道, 我們預測還算不錯,

  • And it's already giving you some emotions.

    已經很接近了。

  • This is another subject that comes in place,

    這已經讓你有點激動了。

  • and this is a prediction.

    這裡有另外一個例子,

  • A little smaller face, we didn't get the complete cranial structure,

    這是預測的結果。

  • but still, it's in the ballpark.

    有點小的臉,我們雖然沒有 跑完整個頭蓋骨結構,

  • This is a subject that comes in our lab,

    但,還是很精準。

  • and this is the prediction.

    這是另一個實驗對象,

  • So these people have never been seen in the training of the machine.

    這是預測結果。

  • These are the so-called "held-out" set.

    這些人從未在我們 訓練的機器裡面出現過。

  • But these are people that you will probably never believe.

    也就是說這些從 外面隨機取樣的。

  • We're publishing everything in a scientific publication,

    但也許各位不相信。

  • you can read it.

    我們已經在科學期刊上 發表這一切了,

  • But since we are onstage, Chris challenged me.

    你可以找到。

  • I probably exposed myself and tried to predict

    但自從知道我們要上台後, 克里斯就挑戰我說,

  • someone that you might recognize.

    我也許可以自己上陣

  • So, in this vial of blood -- and believe me, you have no idea

    並嘗試預測你們可能認識的人。

  • what we had to do to have this blood now, here --

    所以,在這一瓶血液裡面-- 相信我,你們絕對不知道

  • in this vial of blood is the amount of biological information

    我們去哪裡搞來這一瓶血的,

  • that we need to do a full genome sequence.

    這瓶血就擁有 全部的生物資訊,

  • We just need this amount.

    夠我們跑完全部的基因組定序。

  • We ran this sequence, and I'm going to do it with you.

    我們只需要這麼多。

  • And we start to layer up all the understanding we have.

    我們已經把它拿去定序, 下次再做給大家看。

  • In the vial of blood, we predicted he's a male.

    然後開始堆疊出 所有我們知道的東西,

  • And the subject is a male.

    從這瓶血液裡, 我們預測出他是位男士。

  • We predict that he's a meter and 76 cm.

    而實驗對象是男士。

  • The subject is a meter and 77 cm.

    我們預測他身高176公分。

  • So, we predicted that he's 76; the subject is 82.

    實際上他身高177公分。

  • We predict his age, 38.

    我們預測他的體重是76公斤; 實際上是82公斤。

  • The subject is 35.

    我們預測他的年齡是38歲。

  • We predict his eye color.

    實際上是35歲。

  • Too dark.

    我們預測眼睛的顏色是這樣。

  • We predict his skin color.

    太暗了。

  • We are almost there.

    我們預測他的皮膚顏色。

  • That's his face.

    幾乎很接近了。

  • Now, the reveal moment:

    這是他的臉。

  • the subject is this person.

    現在,真相要大白的時刻了:

  • (Laughter)

    他長這樣。

  • And I did it intentionally.

    (笑聲)

  • I am a very particular and peculiar ethnicity.

    我故意這樣做的。

  • Southern European, Italians -- they never fit in models.

    我是一個非常特別的奇特種族。

  • And it's particular -- that ethnicity is a complex corner case for our model.

    南歐洲人、義大利人—— 他們從來不會跟我們的預測相符。

  • But there is another point.

    這個種族在我們的模式下, 就是一個很複雜的特殊案例。

  • So, one of the things that we use a lot to recognize people

    但有另外一個重點。

  • will never be written in the genome.

    我們用很多工具 來辨認人的特徵,

  • It's our free will, it's how I look.

    但絕對不會把這些特徵 寫到基因組裡面。

  • Not my haircut in this case, but my beard cut.

    因為這是我們的自由意志, 我就是長這樣。

  • So I'm going to show you, I'm going to, in this case, transfer it --

    在這個案例中,重點不是我的髮型, 而是我的鬍鬚。

  • and this is nothing more than Photoshop, no modeling --

    所以,我要秀給各位看, 我會把它轉變一下--

  • the beard on the subject.

    就僅是用Photoshop上個鬍子,

  • And immediately, we get much, much better in the feeling.

    沒有調整其他的。

  • So, why do we do this?

    突然間,感覺就比較像了。

  • We certainly don't do it for predicting height

    所以,我們為什麼要做這個?

  • or taking a beautiful picture out of your blood.

    我們絕對不是為了預測高度

  • We do it because the same technology and the same approach,

    或拍一張你血液的美麗照片。

  • the machine learning of this code,

    我們這樣做的原因是, 這些科技、方法、

  • is helping us to understand how we work,

    機器自主學習程式,

  • how your body works,

    可以幫助我們了解 我們要如何進行工作、

  • how your body ages,

    你的身體是如何運作、

  • how disease generates in your body,

    你的身體如何老化、

  • how your cancer grows and develops,

    你身上的疾病是如何造成的、

  • how drugs work

    你的癌症是如何成長和擴散的、

  • and if they work on your body.

    藥物如何運作、

  • This is a huge challenge.

    以及這些藥物在你身上是否有作用。

  • This is a challenge that we share

    這是一個很大的挑戰。

  • with thousands of other researchers around the world.

    這是我們全世界的 研究人員共同的挑戰。

  • It's called personalized medicine.

    它叫做個人化醫療。

  • It's the ability to move from a statistical approach

    這種醫療能力是從 傳統的統計方法,

  • where you're a dot in the ocean,

    讓你大海撈針亂吃藥,

  • to a personalized approach,

    轉成個人客製化的方法,

  • where we read all these books

    都是從閱讀這些書裡面,

  • and we get an understanding of exactly how you are.

    讓我們了解真正的你。

  • But it is a particularly complicated challenge,

    但這是充滿了複雜的挑戰,

  • because of all these books, as of today,

    因為到目前為止,這些書,

  • we just know probably two percent:

    我們僅大概了解2%:

  • four books of more than 175.

    四本書又175頁。

  • And this is not the topic of my talk,

    但這不是我演講的主題,

  • because we will learn more.

    因為我們還有很多要學。

  • There are the best minds in the world on this topic.

    全世界最聰明的智慧 就在這個主題裡面。

  • The prediction will get better,

    預測會越來越改善,

  • the model will get more precise.

    模式會越來越精準。

  • And the more we learn,

    我們學得越多,

  • the more we will be confronted with decisions

    我們克服從未面對過 的決策的能力就越強,

  • that we never had to face before

    有關於生命、

  • about life,

    死亡、

  • about death,

    養育的決策。

  • about parenting.

    所以,我們正接觸到 生命如何運作的內部細節。

  • So, we are touching the very inner detail on how life works.

    而且這個革命不能只侷限在

  • And it's a revolution that cannot be confined

    主流科學或技術上。

  • in the domain of science or technology.

    我們需要一個全球性的對話。

  • This must be a global conversation.

    我們必須開始思考, 我們要建構的人類未來。

  • We must start to think of the future we're building as a humanity.

    我們需要與創意人才、 藝術家、哲學家

  • We need to interact with creatives, with artists, with philosophers,

    政治家相互配合。

  • with politicians.

    每個人都要參與其中,

  • Everyone is involved,

    因為這是我們人類的未來。

  • because it's the future of our species.

    不需要害怕,但需要包容

  • Without fear, but with the understanding

    明年我們所做的決定,

  • that the decisions that we make in the next year

    將永遠地改變歷史。

  • will change the course of history forever.

    謝謝各位!

  • Thank you.

    (掌聲)

  • (Applause)

For the next 16 minutes, I'm going to take you on a journey

譯者: 易帆 余 審譯者: Jianan(Tiana) Zhao

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 預測 字母 人類 基因組 密碼

【TED】裡卡多-薩巴蒂尼:如何讀懂基因組,打造人類(如何讀懂基因組,打造人類|裡卡多-薩巴蒂尼) (【TED】Riccardo Sabatini: How to read the genome and build a human being (How to read the genome and build a human being | Riccardo Sabatini))

  • 25 2
    Zenn 發佈於 2021 年 01 月 14 日
影片單字