Placeholder Image

字幕列表 影片播放

  • Translator: Joseph Geni Reviewer: Morton Bast

    譯者: Yi-Ting Chung 審譯者: Marssi Draw

  • Growth is not dead.

    成長還沒停止

  • (Applause)

    (掌聲)

  • Let's start the story 120 years ago,

    故事從 120 年前說起

  • when American factories began to electrify their operations,

    美國工廠開始電器化運作

  • igniting the Second Industrial Revolution.

    帶動了第二次工業革命

  • The amazing thing is

    但驚人的是

  • that productivity did not increase in those factories

    三十年中,那些工廠的生產力並沒有提升

  • for 30 years. Thirty years.

    整整三十年

  • That's long enough for a generation of managers to retire.

    這段時間足以讓一代的經理退休了

  • You see, the first wave of managers

    我們可以看到,第一批經理

  • simply replaced their steam engines with electric motors,

    只不過是把蒸汽機換成電動機而已

  • but they didn't redesign the factories to take advantage

    他們並沒有重新設計工廠

  • of electricity's flexibility.

    讓它利用電的多變性

  • It fell to the next generation to invent new work processes,

    下個世代開始發明新的工作程序

  • and then productivity soared,

    生產力因此大增

  • often doubling or even tripling in those factories.

    常常是原來工廠的兩倍,甚至是三倍

  • Electricity is an example of a general purpose technology,

    電力是一種通用目的技術的例子

  • like the steam engine before it.

    出現較早的蒸汽機也是一樣

  • General purpose technologies drive most economic growth,

    通用目的技術是帶動經濟發展的主力

  • because they unleash cascades of complementary innovations,

    因為它能帶動一連串有互補性的創新

  • like lightbulbs and, yes, factory redesign.

    像是燈泡,沒錯,工廠因而改頭換面

  • Is there a general purpose technology of our era?

    那現代有通用目的技術存在嗎?

  • Sure. It's the computer.

    當然有,就是電腦

  • But technology alone is not enough.

    但只靠科技還不夠

  • Technology is not destiny.

    科技不能主導命運

  • We shape our destiny,

    是我們掌握自己的命運

  • and just as the earlier generations of managers

    就像早期的經理

  • needed to redesign their factories,

    需要重新打造他們的工廠一樣

  • we're going to need to reinvent our organizations

    我們也需要重建一個組織

  • and even our whole economic system.

    甚至是重塑整個經濟體制

  • We're not doing as well at that job as we should be.

    我們並沒有達到應有的水準

  • As we'll see in a moment,

    我們馬上就會了解

  • productivity is actually doing all right,

    生產力是完全沒有問題的

  • but it has become decoupled from jobs,

    但生產力與工作背道而馳

  • and the income of the typical worker is stagnating.

    而且,一般工人的收入也減少了

  • These troubles are sometimes misdiagnosed

    有時候我們在創新的盡頭

  • as the end of innovation,

    會對這些問題有錯誤的判斷

  • but they are actually the growing pains

    但事實上這是一種成長必要的代價

  • of what Andrew McAfee and I call the new machine age.

    我和安德魯.邁克菲 (Andrew McAfee) 將其稱為「新機器時代」

  • Let's look at some data.

    我們來看看一些資料

  • So here's GDP per person in America.

    這是美國每人的國內生產毛額

  • There's some bumps along the way, but the big story

    線上有些高低起伏,但重點是

  • is you could practically fit a ruler to it.

    你會發現它的路徑與直線符合

  • This is a log scale, so what looks like steady growth

    這是對數比例尺,所以看起來是穩定成長

  • is actually an acceleration in real terms.

    但事實上,它是加速進行著

  • And here's productivity.

    而這是生產力

  • You can see a little bit of a slowdown there in the mid-'70s,

    大家可以看到在 70 年代中期,成長漸緩

  • but it matches up pretty well with the Second Industrial Revolution,

    但這和第二次工業革命的時間吻合

  • when factories were learning how to electrify their operations.

    當時工廠正在學著如何電器化運作

  • After a lag, productivity accelerated again.

    漸緩一段時間後,生產力再度急遽上升

  • So maybe "history doesn't repeat itself,

    所以或許「歷史不會自己重演

  • but sometimes it rhymes."

    但有時不可否認會有幾分相似。」

  • Today, productivity is at an all-time high,

    現在,生產力是前所未有的高

  • and despite the Great Recession,

    儘管是在經濟大蕭條的期間

  • it grew faster in the 2000s than it did in the 1990s,

    2000 年以來還是比 90 年代成長得更快

  • the roaring 1990s, and that was faster than the '70s or '80s.

    喧囂動盪的 90 年代還是比 70 或 80 年代增加更快

  • It's growing faster than it did during the Second Industrial Revolution.

    比第二次工業革命時成長更快

  • And that's just the United States.

    而這只是美國而已

  • The global news is even better.

    全球的表現更是優秀

  • Worldwide incomes have grown at a faster rate

    全球所得在過去十年

  • in the past decade than ever in history.

    以前所未有的驚人速度成長

  • If anything, all these numbers actually understate our progress,

    不過,這些數據事實上低估了我們進步的程度

  • because the new machine age

    因為新機器時代

  • is more about knowledge creation

    強調的是知識的創造

  • than just physical production.

    而非只是實際的產量

  • It's mind not matter, brain not brawn,

    怎麼想比怎麼做來得重要 要動腦而不是靠蠻力

  • ideas not things.

    想法大於產物本身

  • That creates a problem for standard metrics,

    而這產生了測量標準的問題

  • because we're getting more and more stuff for free,

    因為免費的東西越來越多

  • like Wikipedia, Google, Skype,

    像是維基百科、谷歌、網路電話(Skype)

  • and if they post it on the web, even this TED Talk.

    他們把東西放到網路上 甚至是現在這篇 TED 演講

  • Now getting stuff for free is a good thing, right?

    有免費的東西是好事,對吧?

  • Sure, of course it is.

    當然是好事

  • But that's not how economists measure GDP.

    但經濟學家可不是這樣衡量國內生產毛額的

  • Zero price means zero weight in the GDP statistics.

    免費,在國內生產毛額統計上代表權重為零

  • According to the numbers, the music industry

    根據調查顯示,音樂產業的規模

  • is half the size that it was 10 years ago,

    只有十年前的二分之一

  • but I'm listening to more and better music than ever.

    但我現在聽到的音樂,比起以前進步很多

  • You know, I bet you are too.

    我想你們也有這種感覺

  • In total, my research estimates

    整體來說,我的研究估計

  • that the GDP numbers miss over 300 billion dollars per year

    國內生產毛額每年少算超過三千億美元

  • in free goods and services on the Internet.

    忽略了網路上提供的免費產品及服務

  • Now let's look to the future.

    現在我們放眼未來

  • There are some super smart people

    有些非常聰明的人

  • who are arguing that we've reached the end of growth,

    認為我們已經發展到了窮途末路

  • but to understand the future of growth,

    但要了解未來的發展

  • we need to make predictions

    我們必須對成長潛在的驅動力

  • about the underlying drivers of growth.

    做些預測

  • I'm optimistic, because the new machine age

    我抱持樂觀的態度,因為新機器時代

  • is digital, exponential and combinatorial.

    是數位化、指數化及組合化的時代

  • When goods are digital, they can be replicated

    當產品數位化,就能夠複製

  • with perfect quality at nearly zero cost,

    幾乎不用花半毛錢,就能有很好的品質

  • and they can be delivered almost instantaneously.

    而且可以立即傳送

  • Welcome to the economics of abundance.

    歡迎來到經濟蓬勃的時代

  • But there's a subtler benefit to the digitization of the world.

    世界數位化有個比較其次的好處

  • Measurement is the lifeblood of science and progress.

    測量是科學及進步的重要指標

  • In the age of big data,

    在充斥大量資料的時代

  • we can measure the world in ways we never could before.

    我們可以用過去辦不到的方法 來衡量現在的世界

  • Secondly, the new machine age is exponential.

    第二,新機器時代是指數化的時代

  • Computers get better faster than anything else ever.

    電腦比任何東西跑得更快

  • A child's Playstation today is more powerful

    現在小朋友的遊戲機(Playstation)

  • than a military supercomputer from 1996.

    比 1996 年軍隊的超級電腦更進步

  • But our brains are wired for a linear world.

    但我們的大腦是習慣線性世界的

  • As a result, exponential trends take us by surprise.

    因此,指數化的趨勢讓我們大吃 一驚

  • I used to teach my students that there are some things,

    過去我都教學生說,有些事

  • you know, computers just aren't good at,

    你知道嗎?電腦根本做不來

  • like driving a car through traffic.

    像開車通過擁擠的車潮

  • (Laughter)

    (笑聲)

  • That's right, here's Andy and me grinning like madmen

    沒錯,這張照片是我和安迪,像瘋子一樣在大笑

  • because we just rode down Route 101

    因為我們剛下國道 101

  • in, yes, a driverless car.

    沒錯,就在一台無人駕駛的車子裡

  • Thirdly, the new machine age is combinatorial.

    第三,新機器時代是組合化的時代

  • The stagnationist view is that ideas get used up,

    想法停滯就是想法用完了

  • like low-hanging fruit,

    輕而易舉

  • but the reality is that each innovation

    但事實上,每一種創新

  • creates building blocks for even more innovations.

    都是激盪出更多創新的墊腳石

  • Here's an example. In just a matter of a few weeks,

    舉例來說,大約幾個禮拜前

  • an undergraduate student of mine

    我的一位大學生

  • built an app that ultimately reached 1.3 million users.

    開發了一個應用程式,最後使用者高達 130 萬

  • He was able to do that so easily

    他輕而易舉就能辦到

  • because he built it on top of Facebook,

    因為他是在臉書上建立的

  • and Facebook was built on top of the web,

    而臉書是個網站

  • and that was built on top of the Internet,

    網站又建立在網路之上

  • and so on and so forth.

    等等的關聯

  • Now individually, digital, exponential and combinatorial

    現在個人數位化、指數化及組合化

  • would each be game-changers.

    分別都能改變這場遊戲

  • Put them together, and we're seeing a wave

    把這些通通集結起來,我們會看到

  • of astonishing breakthroughs,

    一連串驚人的突破

  • like robots that do factory work or run as fast as a cheetah

    像是機器人,能在工廠工作 跑得跟印度豹一樣快

  • or leap tall buildings in a single bound.

    或是一躍就能上高樓

  • You know, robots are even revolutionizing

    其實,機器人甚至改變了

  • cat transportation.

    貓的運輸方式

  • (Laughter)

    (笑聲)

  • But perhaps the most important invention,

    但或許最重要的發明

  • the most important invention is machine learning.

    最重要的發明是讓機器學習

  • Consider one project: IBM's Watson.

    想想這個計畫:IBM 的沃森(Watson)

  • These little dots here,

    這些點顯示的是

  • those are all the champions on the quiz show "Jeopardy."

    智力節目《危險邊緣》裡所有的冠軍選手

  • At first, Watson wasn't very good,

    一開始,沃森表現不佳

  • but it improved at a rate faster than any human could,

    但它進步的速度超乎常人

  • and shortly after Dave Ferrucci showed this chart

    就在戴維.費魯奇 (Dave Ferrucci) 給我在麻省理工學院的學生

  • to my class at MIT,

    看這張圖的不久後

  • Watson beat the world "Jeopardy" champion.

    沃森打敗了《危險邊緣》的世界冠軍

  • At age seven, Watson is still kind of in its childhood.

    七歲,沃森差不多還在童年時期

  • Recently, its teachers let it surf the Internet unsupervised.

    最近,沃森的老師讓它在 無人指導的情況下上網

  • The next day, it started answering questions with profanities.

    隔天,它開始以髒話回答問題

  • Damn. (Laughter)

    該死!(笑聲)

  • But you know, Watson is growing up fast.

    但你們知道嗎?沃森長得很快

  • It's being tested for jobs in call centers, and it's getting them.

    它參加客服中心工作的考試,全數通過

  • It's applying for legal, banking and medical jobs,

    它申請法律、銀行及醫療方面的工作

  • and getting some of them.

    有一些通過了

  • Isn't it ironic that at the very moment

    這種情況下

  • we are building intelligent machines,

    我們發明了智慧型機器

  • perhaps the most important invention in human history,

    或許還是人類史上最重要的發明

  • some people are arguing that innovation is stagnating?

    卻有人說創新停滯了,這不是很諷刺嗎?

  • Like the first two industrial revolutions,

    像第一及第二次工業革命

  • the full implications of the new machine age

    新機器時代涵蓋的所有層面

  • are going to take at least a century to fully play out,

    至少要一個世紀才會完全落幕

  • but they are staggering.

    但這樣的革命是很驚人的

  • So does that mean we have nothing to worry about?

    所以這代表我們沒有後顧之憂了嗎?

  • No. Technology is not destiny.

    不,科技不能主導命運

  • Productivity is at an all time high,

    生產力是前所未有的高

  • but fewer people now have jobs.

    但有工作的人變少了

  • We have created more wealth in the past decade than ever,

    過去十年來,我們創造了史無前例的財富

  • but for a majority of Americans, their income has fallen.

    但多數的美國人,所得卻下降了

  • This is the great decoupling

    這是很嚴重的排擠效應

  • of productivity from employment,

    生產力排擠就業率

  • of wealth from work.

    財富排擠了工作

  • You know, it's not surprising that millions of people

    其實,這種情況不意外,幾百萬人

  • have become disillusioned by the great decoupling,

    對於這樣的排擠效應感到失望

  • but like too many others,

    但就像大多數人一樣

  • they misunderstand its basic causes.

    他們誤解了基本的原因

  • Technology is racing ahead,

    科技發展神速

  • but it's leaving more and more people behind.

    把越來越多人拋諸腦後

  • Today, we can take a routine job,

    現在的例行公事,我們都可以

  • codify it in a set of machine-readable instructions,

    將其改編成一組機器可讀的指令

  • and then replicate it a million times.

    然後複製一百萬遍

  • You know, I recently overheard a conversation

    最近我偶然聽到一則對話

  • that epitomizes these new economics.

    可以象徵這些經濟狀況

  • This guy says, "Nah, I don't use H&R Block anymore.

    有個男的說:「不,我不要再請稅務公司了

  • TurboTax does everything that my tax preparer did,

    報稅軟體能完成所有報稅員該做的事

  • but it's faster, cheaper and more accurate."

    而且更快、更便宜還更精確。」

  • How can a skilled worker

    一個專業的工作人員

  • compete with a $39 piece of software?

    要怎麼跟一個 39 塊美金的軟體競爭呢?

  • She can't.

    她沒辦法比

  • Today, millions of Americans do have faster,

    現在,的確有幾百萬美國人

  • cheaper, more accurate tax preparation,

    能更快、更便宜又更精確的報稅

  • and the founders of Intuit

    這報稅軟體的創辦人

  • have done very well for themselves.

    他們自己也做得很好

  • But 17 percent of tax preparers no longer have jobs.

    但是 17% 的報稅員丟了工作

  • That is a microcosm of what's happening,

    這只是一部分的縮影

  • not just in software and services, but in media and music,

    不只是軟體和服務方面 還包括媒體及音樂

  • in finance and manufacturing, in retailing and trade --

    財務及製造業,零售及貿易

  • in short, in every industry.

    簡單來說,是所有產業

  • People are racing against the machine,

    人類在跟機器比速度

  • and many of them are losing that race.

    大部分都輸了

  • What can we do to create shared prosperity?

    該怎麼做才能共同創造繁榮的社會?

  • The answer is not to try to slow down technology.

    答案不會是放慢科技發展的速度

  • Instead of racing against the machine,

    我們不要去對抗機器

  • we need to learn to race with the machine.

    而是應該學會去跟機器一起競爭

  • That is our grand challenge.

    這是很大的挑戰

  • The new machine age

    新機器時代

  • can be dated to a day 15 years ago

    可以回朔到 15 年前的某一天

  • when Garry Kasparov, the world chess champion,

    國際西洋棋世界冠軍 加里.卡斯帕羅夫(Gary Kasparov)

  • played Deep Blue, a supercomputer.

    跟一台超級電腦:深藍(Deep Blue),一起比賽

  • The machine won that day,

    那天電腦贏了

  • and today, a chess program running on a cell phone

    而現在,一支手機裡的西洋棋遊戲

  • can beat a human grandmaster.

    都可以打敗一位西洋棋大師

  • It got so bad that, when he was asked

    這種情況真慘,當被問到

  • what strategy he would use against a computer,

    他會用什麼方法來對抗電腦

  • Jan Donner, the Dutch grandmaster, replied,

    荷蘭西洋棋大師 約翰.唐納(Jan Donner)回答:

  • "I'd bring a hammer."

    「我會帶鐵鎚去。」

  • (Laughter)

    (笑聲)

  • But today a computer is no longer the world chess champion.

    但現在電腦已經不是西洋棋世界冠軍了

  • Neither is a human,

    冠軍也不是人

  • because Kasparov organized a freestyle tournament

    因為卡斯帕羅夫舉辦了一種自由式比賽

  • where teams of humans and computers

    這種比賽讓人類和電腦

  • could work together,

    可以一起合作

  • and the winning team had no grandmaster,

    贏家不是大師

  • and it had no supercomputer.

    也不是超級電腦

  • What they had was better teamwork,

    冠軍有的是團隊合作

  • and they showed that a team of humans and computers,

    他們展現了人類和電腦

  • working together, could beat any computer

    是如何並肩作戰,打敗任何一台電腦

  • or any human working alone.

    或是任何一個人孤軍奮戰

  • Racing with the machine

    和電腦一起競爭

  • beats racing against the machine.

    比對抗電腦來得有效

  • Technology is not destiny.

    科技不能主導我們的命運

  • We shape our destiny.

    是我們主導自己的命運

  • Thank you.

    謝謝大家

  • (Applause)

    (掌聲)

Translator: Joseph Geni Reviewer: Morton Bast

譯者: Yi-Ting Chung 審譯者: Marssi Draw

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 美國腔 TED 生產力 機器 電腦 沃森 時代

【TED】Erik Brynjolfsson:增長的關鍵? 與機器賽跑】Erik Brynjolfsson:增長的關鍵?與機器賽跑 (Erik Brynjolfsson: The key to growth? Race with the machines) (【TED】Erik Brynjolfsson: The key to growth? Race with the machines (Erik Brynjolfsson: The key to growth? Race with the machin

  • 53 3
    Zenn 發佈於 2021 年 01 月 14 日
影片單字