Placeholder Image

字幕列表 影片播放

  • I do two things:

    譯者: Bill Hsiung 審譯者: Calvin Chun-yu Chan

  • I design mobile computers and I study brains.

    我有兩個職業。我設計行動電腦,而且我研究大腦。

  • Today's talk is about brains and -- (Audience member cheers)

    今天的演講與大腦有關,

  • Yay! I have a brain fan out there.

    耶,看來今天聽眾中有人是大腦迷。

  • (Laughter)

    (笑聲)

  • If I could have my first slide,

    如果我的投影片已經準備好了,

  • you'll see the title of my talk and my two affiliations.

    你將會看到今天的演講主題及我的兩個所屬機構,

  • So what I'm going to talk about is why we don't have a good brain theory,

    今天我將要談的是 — 為什麼我們沒有一個好的大腦理論,

  • why it is important that we should develop one

    為什麼發展大腦理論如此重要,還有,我們能利用這個理論做什麼?

  • and what we can do about it.

    我將會嘗試在廿分鐘內完成全部的主題。我參與兩家公司。

  • I'll try to do all that in 20 minutes.

    你們大多數是因為我在 Palm 及 Handspring 的工作而認識我的,

  • I have two affiliations.

    但是我同時也經營一個非營利性的科學研究機構

  • Most of you know me from my Palm and Handspring days,

    它位於加州門洛帕克,叫做「紅木神經科學研究所」,

  • but I also run a nonprofit scientific research institute

    我們專攻理論神經科學相關的研究,

  • called the Redwood Neuroscience Institute in Menlo Park.

    我們對研究大腦新皮層如何運作有興趣。

  • We study theoretical neuroscience and how the neocortex works.

    我將談談這一方面。

  • I'm going to talk all about that.

    我將我的另一個生活面(電腦生活)做成了一張投影片,你現在可以看到。

  • I have one slide on my other life, the computer life,

    我在過去的廿年間參與了一些產品的開發,

  • and that's this slide here.

    從第一台筆記型電腦到首批平板電腦等等,

  • These are some of the products I've worked on over the last 20 years,

    最新的一個產品是 Treo,

  • starting from the very original laptop

    我們將會繼續電子產品的開發。

  • to some of the first tablet computers

    我之所以會參與這一行主要是因為我相信行動運算

  • and so on, ending up most recently with the Treo,

    是個人運算產品的未來,而我試著藉由開發這些產品

  • and we're continuing to do this.

    來讓世界更美好。

  • I've done this because I believe mobile computing

    但是我必須承認,這一切都是個意外。

  • is the future of personal computing,

    我其實本來一點都沒有打算要開發這些產品

  • and I'm trying to make the world a little bit better

    而且在我事業剛剛開始的時候我還決定

  • by working on these things.

    我不要從事電腦相關產業。

  • But this was, I admit, all an accident.

    但在我告訴你這個故事之前,我必須告訴你

  • I really didn't want to do any of these products.

    我某天從網路上看到的一張關於 graffiti 輸入法照片的故事。

  • Very early in my career

    當時我在網上尋找 graffiti 的照片,那是一種輸入法程式語言,

  • I decided I was not going to be in the computer industry.

    然後我發現一個網站,它是為一群老師們所架設的,你知道的,

  • Before that, I just have to tell you

    利用 script 來控制黑板上的跑馬燈,

  • about this picture of Graffiti I picked off the web the other day.

    他們網站內容竟然包含 graffiti,我對此感到很抱歉。

  • I was looking for a picture for Graffiti that'll text input language.

    (笑聲)

  • I found a website dedicated to teachers who want to make script-writing things

    當我還年輕,剛剛從工學院畢業的時候,

  • across the top of their blackboard,

    我是康乃爾 79 年畢業班,我決定去 Intel 工作。

  • and they had added Graffiti to it, and I'm sorry about that.

    我在電腦業奮鬥了三個月之後,

  • (Laughter)

    我愛上了另一個東西,我說:「我入錯行了」,

  • So what happened was,

    因為我愛上了大腦。

  • when I was young and got out of engineering school at Cornell in '79,

    這不是真的大腦。這是大腦的描繪圖。

  • I went to work for Intel and was in the computer industry,

    我已經記不清當初是如何開始的了,

  • and three months into that, I fell in love with something else.

    在我腦海中只有一個鮮明的回憶。

  • I said, "I made the wrong career choice here,"

    1979 年九月,新一期的科學美國人出刊

  • and I fell in love with brains.

    那是一期談論大腦的特刊。非常的棒。

  • This is not a real brain.

    那是有史以來最棒的一期雜誌之一。那期刊物中談論神經、

  • This is a picture of one, a line drawing.

    發育、疾病以及視力等等所有的

  • And I don't remember exactly how it happened,

    跟大腦相關且你會感興趣的主題。真的非常令人印象深刻。

  • but I have one recollection, which was pretty strong in my mind.

    而人會得到一種錯誤的印象,那就是我們已經非常了解我們的大腦了。

  • In September of 1979,

    但是那一期的最後一篇文章是由發現 DNA 結構而成名的法蘭西斯•克里克所撰寫。

  • Scientific American came out with a single-topic issue about the brain.

    今天,如果我沒記錯的話,剛好是發現 DNA 結構五十週年紀念日。

  • It was one of their best issues ever.

    他寫了一個故事,主要是告訴我們:

  • They talked about the neuron, development, disease, vision

    這個嘛~這些研究都很棒,可是你知道嗎?

  • and all the things you might want to know about brains.

    我們對大腦一點都不了解

  • It was really quite impressive.

    沒有人知道大腦是如何運作的,

  • One might've had the impression we knew a lot about brains.

    所以別相信其他人告訴你的事情。

  • But the last article in that issue was written by Francis Crick of DNA fame.

    這是從文章中摘錄下來的一句話。他說:「這裡顯著缺乏的是,」

  • Today is, I think, the 50th anniversary of the discovery of DNA.

    他是一個非常有禮的英國紳士,「我們會注意到可以用來解釋這些研究

  • And he wrote a story basically saying, this is all well and good,

    的廣泛概念架構是明顯地不足的。」

  • but you know, we don't know diddly squat about brains,

    我認為他用「架構」一詞用得非常洽當。

  • and no one has a clue how they work,

    他並沒有說我們連一個理論都沒有。他所說得是,

  • so don't believe what anyone tells you.

    我們連如何開始建立理論都不知道該如何下手 —

  • This is a quote from that article, he says:

    我們連個架構都沒有。

  • "What is conspicuously lacking" -- he's a very proper British gentleman --

    如果你想要引用湯瑪斯•孔恩的說法,我們處在一個前典範的時代。

  • "What is conspicuously lacking is a broad framework of ideas

    因此我愛上這個領域了,然後說:看看,

  • in which to interpret these different approaches."

    我們已經知道這麼多關於腦的知識。這會有多難?

  • I thought the word "framework" was great.

    而且這是個可以一輩子鑽研的題目。我認為我能對世界做出一點貢獻,

  • He didn't say we didn't have a theory.

    因此我嘗試著離開電腦業,轉行到腦科學研究領域。

  • He says we don't even know how to begin to think about it.

    首先,我跑去麻省理工裡的一間人工智慧實驗室,

  • We don't even have a framework.

    我說,嘿,我也想要建造智能機器,

  • We are in the pre-paradigm days, if you want to use Thomas Kuhn.

    但是我覺得達到這個目標前必須要先能了解大腦是如何運作的。

  • So I fell in love with this.

    然而他們說,喔,你並不需要知道那個。

  • I said, look: We have all this knowledge about brains -- how hard can it be?

    我們只需要設計電腦程式,不需要做其他不相干的事。

  • It's something we can work on in my lifetime; I could make a difference.

    我再說,不,你們真的應該研究大腦。他們說,喔,你知道嗎?

  • So I tried to get out of the computer business, into the brain business.

    你錯了。然後我說,不,你才錯了,所以當然我沒被錄取。

  • First, I went to MIT, the AI lab was there.

    (笑聲)

  • I said, I want to build intelligent machines too,

    但我有點失望 — 因為我還年輕,但幾年以後我又嘗試了一次

  • but I want to study how brains work first.

    這次是在加州,我跑去柏克萊。

  • And they said, "Oh, you don't need to do that.

    然後我說,我要從生物方面開始著手。

  • You're just going to program computers, that's all.

    所以我被錄取了,進入了生物物理博士班。然後我心想,太棒了,

  • I said, you really ought to study brains.

    我現在開始研究大腦了,然後我說,好的,我想要鑽研理論。

  • They said, "No, you're wrong."

    但他們告訴我,喔,不,你不能研究關於腦的理論。

  • I said, "No, you're wrong," and I didn't get in.

    你不想做那個的。沒有人會給你經費支持你做這種研究。

  • (Laughter)

    身為一個研究生,你不能這麼做。所以我又說了,我的老天,

  • I was a little disappointed -- pretty young --

    我非常沮喪。我說,但我能在這方面有所成就。

  • but I went back again a few years later,

    所以我唯一能做的是,我回到了電腦業

  • this time in California, and I went to Berkeley.

    然後說,好吧,我將留下來工作一段時間,做出一番成就。

  • And I said, I'll go in from the biological side.

    然後我就開始設計出所有這些電子產品。

  • So I got in the PhD program in biophysics.

    (笑聲)

  • I was like, I'm studying brains now. Well, I want to study theory.

    我告訴自己,我在這邊待四年,賺些錢,

  • They said, "You can't study theory about brains.

    我會成家,變得更成熟些,

  • You can't get funded for that.

    同時也許神經科學領域也會發展得成熟一點。

  • And as a graduate student, you can't do that."

    好吧,我花了超過四年的時間。時光飛逝,已經 16 年了。

  • So I said, oh my gosh.

    但是我終於在研究大腦了,而我將會跟你們談談我的研究。

  • I was depressed; I said, but I can make a difference in this field.

    為什麼我們應該要有一個好的大腦理論?

  • I went back in the computer industry

    人們為了千百種不同的理由研究科學。

  • and said, I'll have to work here for a while.

    其中一個理由 — 最基本的理由 — 是我們想要了解事物。

  • That's when I designed all those computer products.

    人類是好奇的,我們只是想要獲取新知而已,你了解嗎?

  • (Laughter)

    為什麼我們要研究螞蟻?不為什麼,只因為它很有趣。

  • I said, I want to do this for four years, make some money,

    也許我們能從中學到新知,但是研究本身既有趣又吸引人。

  • I was having a family, and I would mature a bit,

    但有時,科學有一些其他的屬性

  • and maybe the business of neuroscience would mature a bit.

    而這些屬性會讓它額外的吸引人。

  • Well, it took longer than four years. It's been about 16 years.

    有時候科學能夠讓我們更加認識自己,

  • But I'm doing it now, and I'm going to tell you about it.

    它會讓我們知道我們是誰。

  • So why should we have a good brain theory?

    雖然這極少發生,如你所知演化學說是一例,哥白尼也做到了,

  • Well, there's lots of reasons people do science.

    它們徹底地改變了我們對自己身份地位上的認知。

  • The most basic one is, people like to know things.

    但是最基本的,我們代表著我們的大腦。我的大腦正在和你的交談著。

  • We're curious, and we go out and get knowledge.

    雖然我們的身體隨時陪伴著我們,但是是我的腦在和你的腦交談。

  • Why do we study ants? It's interesting.

    所以如果我們想要了解我們到底是誰,我們是如何感覺、理解事物,

  • Maybe we'll learn something useful, but it's interesting and fascinating.

    我們真的需要了解大腦是什麼。

  • But sometimes a science has other attributes

    另一方面,有時科學

  • which makes it really interesting.

    能對社會利益、科技、

  • Sometimes a science will tell something about ourselves;

    商業,各式各樣領域做出極大的貢獻。這也是其中之一,

  • it'll tell us who we are.

    因為當我們了解大腦是如何運作之後,我們將能夠

  • Evolution did this and Copernicus did this,

    建造智慧機器,我相信整體來說,這會是件好事,

  • where we have a new understanding of who we are.

    這將會對社會有極大助益

  • And after all, we are our brains. My brain is talking to your brain.

    就如同基礎科技一般。

  • Our bodies are hanging along for the ride,

    所以,為什麼我們沒有一個好的大腦理論?

  • but my brain is talking to your brain.

    而且人們研究大腦的歷史已經有百來年了。

  • And if we want to understand who we are and how we feel and perceive,

    那麼,讓我們先來看看普通科學領域的狀況。

  • we need to understand brains.

    這是普通科學領域。

  • Another thing is sometimes science leads to big societal benefits, technologies,

    普通科學領域中的理論與實作家呈現一個良好的平衡。

  • or businesses or whatever.

    因此當理論學者說,嗯,我認為事情是這般這般,

  • This is one, too, because when we understand how brains work,

    然後實驗科學家說,不,你錯了。

  • we'll be able to build intelligent machines.

    然後就像這樣一直反覆來回,對吧?

  • That's a good thing on the whole,

    這方法對物理適用。對地理適用。但這些是普通科學領域,

  • with tremendous benefits to society,

    神經科學看起來是什麼樣子?這就是神經科學的狀況。

  • just like a fundamental technology.

    我們的數據累積得比山還高,解剖學、生理學和行為學的數據。

  • So why don't we have a good theory of brains?

    你無法想像我們對大腦的枝微末節了解得如何透徹。

  • People have been working on it for 100 years.

    今年 (2003) 的神經科學研討會共有 28,000 人參加,

  • Let's first take a look at what normal science looks like.

    每一個都在研究大腦。

  • This is normal science.

    太多資訊。但沒有理論。在上層的這一塊是如此的微小,搖搖欲墜。

  • Normal science is a nice balance between theory and experimentalists.

    而且理論在神經科學中尚未扮演任何重要的角色。

  • The theorist guy says, "I think this is what's going on,"

    這真可恥。為什麼會這樣?

  • the experimentalist says, "You're wrong."

    如果你問神經科學家,為什麼會是這種狀況?

  • It goes back and forth, this works in physics, this in geology.

    一開始他們都會承認此事。但如果你接著問,他們會說,

  • But if this is normal science, what does neuroscience look like?

    這個嘛,有很多的原因使我們沒有一個好的大腦理論。

  • This is what neuroscience looks like.

    有些人會說,呃,我們還沒有足夠的數據,

  • We have this mountain of data,

    我們還需要更多資訊,還有很多我們不知道的事。

  • which is anatomy, physiology and behavior.

    我才剛剛告訴你們,我們有的數據多到你們的腦袋都裝不下。

  • You can't imagine how much detail we know about brains.

    我們擁有如此多的資訊;我們不知道如何開始整理這些資訊。

  • There were 28,000 people who went to the neuroscience conference this year,

    再有更多資訊又能怎樣?

  • and every one of them is doing research in brains.

    也許我們會幸運的發現某些寶藏,但我不這麼認為。

  • A lot of data, but no theory.

    這其實只是因為我們沒有理論這個事實所導致的症狀罷了。

  • There's a little wimpy box on top there.

    我們不需要更多數據 — 我們需要一個好理論。

  • And theory has not played a role in any sort of grand way

    有時候某些人會回答另一個說法,因為大腦是如此複雜,

  • in the neurosciences.

    我們還需要 50 年的研究。

  • And it's a real shame.

    我甚至好像聽到 Chris 昨天才說了類似的話。

  • Now, why has this come about?

    我不確定你說了什麼,Chris,但好像是類似

  • If you ask neuroscientists why is this the state of affairs,

    — 大腦是宇宙中最複雜的事物之一。這不是真的。

  • first, they'll admit it.

    你比你的大腦還要複雜。腦只是你身體的一部分。

  • But if you ask them, they say,

    並且,雖然大腦看起來非常複雜,

  • there's various reasons we don't have a good brain theory.

    但是我們常認為我們所不了解的事物是複雜的。

  • Some say we still don't have enough data,

    總是這樣子的。我們能夠說的只是,這個嘛,

  • we need more information, there's all these things we don't know.

    我的新皮層,大腦中我感興趣的部份,有三百億個細胞。

  • Well, I just told you there's data coming out of your ears.

    但你知道嗎?它非常、非常的規則。

  • We have so much information, we don't even know how to organize it.

    事實上,它看起來像是同一個東西不斷的重複、重複再重複。

  • What good is more going to do?

    它不像看起來般如此複雜。所以這不是問題。

  • Maybe we'll be lucky and discover some magic thing, but I don't think so.

    某些人說,大腦無法了解大腦。

  • This is a symptom of the fact that we just don't have a theory.

    非常具有禪意。呼,是吧 —

  • We don't need more data, we need a good theory.

    (笑聲)

  • Another one is sometimes people say,

    聽起來很有道理,但為什麼?我是說,真的有道理嗎?

  • "Brains are so complex, it'll take another 50 years."

    大腦只不過是一堆細胞。你能了解你的肝臟呀。

  • I even think Chris said something like this yesterday, something like,

    肝臟中也有很多細胞,對吧?

  • it's one of the most complicated things in the universe.

    所以,你知道,我不覺得這有什麼問題。

  • That's not true -- you're more complicated than your brain.

    最後,某些人會說,那麼,你知道,

  • You've got a brain.

    我不覺得我是一堆細胞,你能理解嗎?我有意識。

  • And although the brain looks very complicated,

    我能累積經驗,我生活在世界中,類似這些話。

  • things look complicated until you understand them.

    我不可能只是一堆細胞。是的,你知道,

  • That's always been the case.

    人們總是相信生物體內存在某種「生命力」,

  • So we can say, my neocortex, the part of the brain I'm interested in,

    我們現在知道這一點都不是事實。

  • has 30 billion cells.

    這一點都沒有事實根據,好吧,除了人們不想相信

  • But, you know what? It's very, very regular.

    細胞可以做到人們平日在做的事情。

  • In fact, it looks like it's the same thing repeated over and over again.

    因此,如果某些人們落入形而上學二元論的泥淖中,

  • It's not as complex as it looks. That's not the issue.

    一些很聰明的人也不例外,但是我們可以駁斥他們的所有說法。

  • Some people say, brains can't understand brains.

    (笑聲)

  • Very Zen-like. Woo.

    不,我將要告訴你們還有別的,

  • (Laughter)

    而且非常基本,就是我下面要說的這句話:

  • You know, it sounds good, but why? I mean, what's the point?

    我們沒有一個好的大腦理論的另一個理由是,

  • It's just a bunch of cells. You understand your liver.

    我們被一種直觀的、根深蒂固的

  • It's got a lot of cells in it too, right?

    但是錯誤的假設所蒙蔽,因此一直無法找到問題的答案。

  • So, you know, I don't think there's anything to that.

    我們所相信的某些事情,雖然表面上很顯而易見,但是它是錯的。

  • And finally, some people say,

    事實上,科學界的歷史中已經發生過同樣的事情,而在我告訴你以前,

  • "I don't feel like a bunch of cells -- I'm conscious.

    我要先跟你談談科學界的歷史。

  • I've got this experience, I'm in the world.

    你們看看其他的科學革命,

  • I can't be just a bunch of cells."

    這邊,我們來談談太陽系,那是哥白尼的貢獻,

  • Well, people used to believe there was a life force to be living,

    達爾文的演化還有魏格納的板塊構造論。

  • and we now know that's really not true at all.

    他們都與大腦科學有很多共通之處。

  • And there's really no evidence,

    首先,他們有很多無法解釋的數據,一堆數據。

  • other than that people just disbelieve that cells can do what they do.

    但是當他們有了理論之後,這些數據變得容易處理的多。

  • So some people have fallen into the pit of metaphysical dualism,

    偉大的心靈總是會遭遇許多困難,那些極端、極端聰明的人們。

  • some really smart people, too, but we can reject all that.

    我們現在並不比他們當時聰明。

  • (Laughter)

    思考問題是極端困難的,

  • No, there's something else,

    但一旦你想通了,事情就會得容易理解得多。

  • something really fundamental, and it is:

    我女兒能夠了解這三個理論

  • another reason why we don't have a good brain theory

    至少了解他們的基本架構,而那時她只是個幼稚園學童而已。

  • is because we have an intuitive, strongly held but incorrect assumption

    因此,這並沒有這麼難,就像這樣,這是蘋果,這是柳丁,

  • that has prevented us from seeing the answer.

    你知道的,地球在公轉,類似的這種東西。

  • There's something we believe that just, it's obvious, but it's wrong.

    最後,另一件事是答案始終在那邊,

  • Now, there's a history of this in science and before I tell you what it is,

    但是我們卻因為錯誤而明顯的假設而忽略了它,這就是問題所在。

  • I'll tell you about the history of it in science.

    問題就是這個直觀且根深蒂固的認知是錯的。

  • Look at other scientific revolutions --

    拿太陽系的例子來說,地球自轉的概念

  • the solar system, that's Copernicus,

    還有地球表面以每小時幾千英哩的速度在轉動著,

  • Darwin's evolution, and tectonic plates, that's Wegener.

    不用說還有地球本身以幾百萬英哩的時速在太陽系中移動著。

  • They all have a lot in common with brain science.

    這真是瘋了。我們都知道地球並沒有在動。

  • First, they had a lot of unexplained data. A lot of it.

    你覺得你有在以千哩的時速移動嗎?

  • But it got more manageable once they had a theory.

    當然沒有。你知道,當有人說,

  • The best minds were stumped -- really smart people.

    地球在太空中自轉,而太空是如此之大,

  • We're not smarter now than they were then;

    然後他們會把你關起來,這就是當時他們所做的事。

  • it just turns out it's really hard to think of things,

    (笑聲)

  • but once you've thought of them, it's easy to understand.

    所以這是直觀且顯而易見的。現在,我們談談演化…

  • My daughters understood these three theories,

    發生在演化上的情形是一樣的。我們教導孩子,嗯,聖經上說,

  • in their basic framework, in kindergarten.

    你知道的,上帝創造了所有生命,貓是貓,狗是狗,

  • It's not that hard -- here's the apple, here's the orange,

    人是人,樹木是樹木,他們是不變的。

  • the Earth goes around, that kind of stuff.

    諾亞奉命將他們放到方舟內,如此這般。而且,你知道,

  • Another thing is the answer was there all along,

    事實上,如果你相信演化,我們都來自同一個祖先,

  • but we kind of ignored it because of this obvious thing.

    則我們和大廳裡那些植物有共同的祖先。

  • It was an intuitive, strongly held belief that was wrong.

    這是演化告訴我們的。並且它是真的。儘管有點難令人相信。

  • In the case of the solar system,

    板塊構造論也遭遇類似情形,不是嗎?

  • the idea that the Earth is spinning,

    所有的山嶽與大陸都飄浮在地球的表面,

  • the surface is going a thousand miles an hour,

    你相信嗎?這真的一點都不合邏輯。

  • and it's going through the solar system at a million miles an hour --

    所以什麼是我說的關於大腦直觀但是不正確的假設,

  • this is lunacy; we all know the Earth isn't moving.

    並使我們不能真正的了解大腦?

  • Do you feel like you're moving a thousand miles an hour?

    現在我將要告訴你們,而且它將會看起來正確無誤不容懷疑,

  • If you said Earth was spinning around in space and was huge --

    但這就是我想要說明的,不是嗎?然後我將會作一番論述

  • they would lock you up, that's what they did back then.

    為什麼你們另一個假設也是錯的。

  • So it was intuitive and obvious. Now, what about evolution?

    這個直觀且明顯的事情就是:智能可以藉由

  • Evolution, same thing.

    行為來界定,

  • We taught our kids the Bible says God created all these species,

    我們擁有智能乃是因為我們行事的方法

  • cats are cats; dogs are dogs; people are people; plants are plants;

    還有我們展現智慧的行為,但是我要告訴你們這是錯的。

  • they don't change.

    智能其實應該是由預測能力來界定的。

  • Noah put them on the ark in that order, blah, blah.

    接下來的幾張投影片,我將解釋我的論點,

  • The fact is, if you believe in evolution, we all have a common ancestor.

    給你們一個可以了解它的意義的例子。這裡有一個系統。

  • We all have a common ancestor with the plant in the lobby!

    工程師喜歡這樣看待系統。科學家也喜歡這樣看待系統。

  • This is what evolution tells us. And it's true. It's kind of unbelievable.

    他們說,嗯,這個箱子裡面有某種東西,然後我們有輸入跟輸出。

  • And the same thing about tectonic plates.

    研究人工智慧的人說,我知道,箱子裡的東西是可編程的電腦

  • All the mountains and the continents

    因為它和腦是對等的,我們將會給它一些輸入訊號

  • are kind of floating around on top of the Earth.

    然後我們可以讓它做些事情,產生行為。

  • It doesn't make any sense.

    然後艾倫•涂林訂定了涂林測驗,這個測驗基本上是說,

  • So what is the intuitive, but incorrect assumption,

    如果某物的行為可以表現得跟人一模一樣,我們知道它有智能。

  • that's kept us from understanding brains?

    對於智能本質上的一個行為標準,

  • I'll tell you. It'll seem obvious that it's correct. That's the point.

    這個假設佔據了我們的想法很長的一段時間。

  • Then I'll make an argument why you're incorrect on the other assumption.

    但是事實上,我稱之為真實智慧。

  • The intuitive but obvious thing is:

    真實智慧是建築在其它東西上。

  • somehow, intelligence is defined by behavior;

    我們藉由一序列的模式來體驗這個世界,我們儲存這些模式,

  • we're intelligent because of how we do things

    我們也會回憶這些模式。當我們回憶時,我們會將現實與記憶中的

  • and how we behave intelligently.

    模式對照,並且我們無時無刻不在預測下一刻。

  • And I'm going to tell you that's wrong.

    這是永恆的標準。有一個關於我們的外在標準大概是這樣的,

  • Intelligence is defined by prediction.

    我們了解這個世界嗎?我正在做預測嗎?等等這些。

  • I'm going to work you through this in a few slides,

    你們現在都顯示出智慧,但是你們並沒有在做任何事。

  • and give you an example of what this means.

    也許你剛剛正在搔癢,或者挖鼻孔,

  • Here's a system.

    我不知道,但是你現在並沒有在做任何事,

  • Engineers and scientists like to look at systems like this.

    但是你是有智慧的,你了解我在說什麼。

  • They say, we have a thing in a box. We have its inputs and outputs.

    因為你有智慧而且你聽得懂英文,

  • The AI people said, the thing in the box is a programmable computer,

    你知道這句話最後一個 — (沉默)

  • because it's equivalent to a brain.

    字是什麼。

  • We'll feed it some inputs and get it to do something, have some behavior.

    這個字會自己顯現,你無時無刻不在做類似這種的預測。

  • Alan Turing defined the Turing test, which essentially says,

    所以,我要說的是,

  • we'll know if something's intelligent if it behaves identical to a human --

    這個永恆的預測是我們大腦新皮層的訊號輸出。

  • a behavioral metric of what intelligence is

    不知怎麼的,預測最終導致智能行為。

  • that has stuck in our minds for a long time.

    這裡我來解釋它是如何發生的。讓我們先從非智能大腦開始看起。

  • Reality, though -- I call it real intelligence.

    其實我不贊成稱之為非智能大腦,這種原始的大腦也是我們的一部分,

  • Real intelligence is built on something else.

    所以下面我們稱之為非哺乳動物的腦,例如爬蟲類,

  • We experience the world through a sequence of patterns,

    所以我說,就鱷魚吧,我們拿鱷魚來當例子。

  • and we store them, and we recall them.

    鱷魚擁有一些非常複雜的感知能力。

  • When we recall them, we match them up against reality,

    牠有非常好的視覺、聽覺、觸覺等等。

  • and we're making predictions all the time.

    一張嘴一隻鼻子。牠擁有非常複雜的行為。

  • It's an internal metric; there's an internal metric about us,

    牠可以奔跑、躲藏。牠擁有恐懼與情緒。牠能將你吃了,你知道吧。

  • saying, do we understand the world, am I making predictions, and so on.

    牠可以攻擊。牠可以做各種事。

  • You're all being intelligent now, but you're not doing anything.

    但是我們不認為鱷魚智力很高,跟人類一點都不能相比。

  • Maybe you're scratching yourself, but you're not doing anything.

    但是牠已經擁有如此複雜的行為了。

  • But you're being intelligent; you're understanding what I'm saying.

    在演化過程中,到底發生了什麼事?

  • Because you're intelligent and you speak English,

    在哺乳類的演化過成中首先,

  • you know the word at the end of this

    我們開始發展出所謂的新皮層。

  • sentence.

    我將在這邊用此來表示新皮層,

  • The word came to you; you make these predictions all the time.

    用這個建基於原始大腦上方的方塊來表示。

  • What I'm saying is,

    新皮層就是一層新的組織。一層覆蓋在你大腦上方的新組織。

  • the internal prediction is the output in the neocortex,

    如果你不知道,它就是你頭裡面最外層那個充滿皺摺的東西,

  • and somehow, prediction leads to intelligent behavior.

    因為它不合身且被胡亂地塞在你的腦袋裡,所以它充滿了皺摺。

  • Here's how that happens:

    (笑聲)

  • Let's start with a non-intelligent brain.

    不,我說真的,真的是這樣。它大約跟張桌巾一般大小。

  • I'll argue a non-intelligent brain, we'll call it an old brain.

    它並不合身,所以它充滿皺摺。看看在這邊我是怎麼畫它的。

  • And we'll say it's a non-mammal, like a reptile,

    原始大腦仍然在那邊。你還擁有著與鱷魚相似的腦。

  • say, an alligator; we have an alligator.

    是真的。那是你原始情緒的腦。

  • And the alligator has some very sophisticated senses.

    就是那些東西,所有你會有的直覺反應。

  • It's got good eyes and ears and touch senses and so on,

    而在那個上方。我們有一個稱為新皮層的記憶系統。

  • a mouth and a nose.

    而這個記憶系統座落在大腦感知區的上方。

  • It has very complex behavior.

    所以當感官訊號輸入進來並刺激了原始大腦,

  • It can run and hide. It has fears and emotions. It can eat you.

    它開始往更上層的新皮層傳遞。而新皮層只是將之記憶下來。

  • It can attack. It can do all kinds of stuff.

    它待在那邊說,呃,我將要把正在發生的事情全部記下來,

  • But we don't consider the alligator very intelligent,

    我去了哪裡,我見了哪些人,我聽到了什麼東西,如此這般。

  • not in a human sort of way.

    到了未來,當它再次見到類似的東西,

  • But it has all this complex behavior already.

    處於類似或者同樣的環境下,

  • Now in evolution, what happened?

    它就會重播。它會開始重播。

  • First thing that happened in evolution with mammals

    喔,我到過這裡。當你上次在這裡的時候,

  • is we started to develop a thing called the neocortex.

    接下來發生了這件事。它能讓你對未來產生預測。

  • I'm going to represent the neocortex by this box on top of the old brain.

    它能讓你,就是它提供你腦部信號回饋,

  • Neocortex means "new layer." It's a new layer on top of your brain.

    他們能讓你了解即將會發生的事,

  • It's the wrinkly thing on the top of your head

    能讓你聽到一句話的最後一個「字」,即使我還沒說出口。

  • that got wrinkly because it got shoved in there and doesn't fit.

    就是這種給原始大腦的回饋

  • (Laughter)

    能夠讓你做出更多有智慧的決定。

  • Literally, it's about the size of a table napkin

    這是我這次演講中最重要的一張投影片,因此我會再花點時間來解釋。

  • and doesn't fit, so it's wrinkly.

    所以,每次當你說,喔,我能預測到這些事情。

  • Now, look at how I've drawn this.

    就像如果你是一隻迷宮中的老鼠,然後你認識了這個迷宮,

  • The old brain is still there.

    下一次當你在迷宮中的時候,你會做一樣的事情,

  • You still have that alligator brain. You do. It's your emotional brain.

    但是突然間,你變聰明了

  • It's all those gut reactions you have.

    因為你會說,喔,我認得這個迷宮,我知道該往哪邊走,

  • On top of it, we have this memory system called the neocortex.

    我曾經到過這裡,我能夠預見未來。這就是智慧在做的事。

  • And the memory system is sitting over the sensory part of the brain.

    在人身上,換句話說,這適用於所有哺乳動物,

  • So as the sensory input comes in and feeds from the old brain,

    同樣適用於其他哺乳動物,但在人類身上,這個額外重要。

  • it also goes up into the neocortex.

    在人身上,我們事實上發展出了新皮層的前段部份

  • And the neocortex is just memorizing.

    稱為新皮層前緣。自然界在這邊耍了一個小手段。

  • It's sitting there saying, I'm going to memorize all the things going on:

    它複製了後緣部份,後段的感知部份,

  • where I've been, people I've seen, things I've heard, and so on.

    然後把它放來前面。

  • And in the future, when it sees something similar to that again,

    因此人類很特殊的在腦前段也有此相同的構造,

  • in a similar environment, or the exact same environment,

    但是我們使用它來控制運動功能。

  • it'll start playing it back: "Oh, I've been here before,"

    所以現在我們能夠策劃非常複雜的運動計畫,和類似的事情。

  • and when you were here before, this happened next.

    我沒有時間詳細解說所有的這些東西,但是如果你們想要了解大腦是如何運作的,

  • It allows you to predict the future.

    你們必須了解上一段我所解釋的哺乳動物新皮層運作的原理,

  • It literally feeds back the signals into your brain;

    它是如何的使我們具有儲存模式和進行預測的能力。

  • they'll let you see what's going to happen next,

    現在讓我給你們一些關於預測的實例。

  • will let you hear the word "sentence" before I said it.

    我已經說過那個關於「字」的例子了。在音樂中,

  • And it's this feeding back into the old brain

    如果你曾經聽過一首歌,如果你之前聽過 Jill 唱這些歌,

  • that will allow you to make more intelligent decisions.

    當她唱歌時,下一個音符就已經躍進你的耳朵了 —

  • This is the most important slide of my talk, so I'll dwell on it a little.

    當你一邊在聽歌的時候,你一邊在預期著。如果是一張音樂專輯,

  • And all the time you say, "Oh, I can predict things,"

    當一首歌結束,下一首歌會自動在你腦海中浮現。

  • so if you're a rat and you go through a maze, and you learn the maze,

    而且這種事情一直不斷的在發生。你一直在做這些預測。

  • next time you're in one, you have the same behavior.

    我聽過一個稱作「變更的門」的思想實驗。

  • But suddenly, you're smarter; you say, "I recognize this maze,

    這個思想實驗指出,如果你在家裏有一個門,

  • I know which way to go; I've been here before; I can envision the future."

    當你在這裡聽演講的時候,我去更動它,我找了一個人

  • That's what it's doing.

    在這時候回到你家,任意對那扇門做變更,

  • This is true for all mammals --

    他們將把你們的門把移動約兩寸的距離。

  • in humans, it got a lot worse.

    然後當你今晚回到家的時候,你將會把你的手伸出,

  • Humans actually developed the front of the neocortex,

    然後你將會碰到門把,就在這時,你會注意到

  • called the anterior part of the neocortex.

    門把的位置不對了,然後你會驚覺,哇,有事情發生了。

  • And nature did a little trick.

    你仍然需要一兩秒來思考到底發生了什麼事,但是一定有什麼不一樣。

  • It copied the posterior, the back part, which is sensory,

    我可以任意更動你的門把。

  • and put it in the front.

    我可以使它變大或變小,我可以由黃銅改成鍍銀,

  • Humans uniquely have the same mechanism on the front,

    我可以將門把改為門桿。我可以改變你的門本身,為它上色,

  • but we use it for motor control.

    或者加上窗戶。我有一千種以上的方法來變更你的門,

  • So we're now able to do very sophisticated motor planning, things like that.

    然後在你開門的兩秒內,

  • I don't have time to explain, but to understand how a brain works,

    你將會注意到某些變更的存在。

  • you have to understand how the first part of the mammalian neocortex works,

    你沒辦法藉由工程學來完成這件事,人工智慧的解決途徑是,

  • how it is we store patterns and make predictions.

    建立一個門的資料庫。它擁有所有這些與門相關的特性表。

  • Let me give you a few examples of predictions.

    然後當你走到門前時,你知道,讓我們按照表來一個個檢查這些項目。

  • I already said the word "sentence."

    門、門、門、你知道的、顏色,你知道我想說什麼嗎?

  • In music, if you've heard a song before,

    我們不是這麼做的。你的大腦不是這樣運作的。

  • when you hear it, the next note pops into your head already --

    你的大腦事實上是一直在做預測

  • you anticipate it.

    預測在你的環境中將會發生什麼事。

  • With an album, at the end of a song, the next song pops into your head.

    當我把我的手放上這張桌子,我會預期感覺到我的手停止。

  • It happens all the time, you make predictions.

    當我走路時,每一步,即使只差了 1/8 英吋,

  • I have this thing called the "altered door" thought experiment.

    我也會察覺某些事情不一樣了。

  • It says, you have a door at home;

    你持續的在對周遭的環境做預測。

  • when you're here, I'm changing it --

    我將簡短的談談視覺。這是一張女人的照片。

  • I've got a guy back at your house right now, moving the door around,

    當你看著人時,你的眼睛大約會以

  • moving your doorknob over two inches.

    每秒兩至三次的頻率移動。

  • When you go home tonight, you'll put your hand out, reach for the doorknob,

    你不自覺,可是你的眼睛是不停的在移動著。

  • notice it's in the wrong spot

    因此當你在看某人的臉時,

  • and go, "Whoa, something happened."

    一般來說你會從一隻眼睛看到另一隻眼睛,再從眼睛到鼻子到嘴巴。

  • It may take a second, but something happened.

    現在,當你的眼睛在對方眼睛間移動的時候,

  • I can change your doorknob in other ways --

    如果一個鼻子出現在那邊,

  • make it larger, smaller, change its brass to silver, make it a lever,

    你會在本來應該出現眼睛的地方看到鼻子,

  • I can change the door; put colors on, put windows in.

    然後你會像,喔,天呀,你知道 —

  • I can change a thousand things about your door

    (笑聲)

  • and in the two seconds you take to open it,

    這個人不太對勁。

  • you'll notice something has changed.

    而這是因為你一直在做預測。

  • Now, the engineering approach, the AI approach to this,

    你不是只是往那邊看,然後說:我現在看到什麼東西?

  • is to build a door database with all the door attributes.

    一個鼻子,那沒什麼。不,你會預期你將看到的東西。

  • And as you go up to the door, we check them off one at time:

    (笑聲)

  • door, door, color ...

    無時無刻。最後,讓我們來想想我們是如何做智力測驗的。

  • We don't do that. Your brain doesn't do that.

    我們用預測能力來測驗它。下一個字是什麼,對吧?

  • Your brain is making constant predictions all the time

    這個之於這個等於那個之於那個。這個序列的下一個數字是什麼?

  • about what will happen in your environment.

    這是一個物體的三視圖。

  • As I put my hand on this table, I expect to feel it stop.

    第四面可能是什麼?這就是我們測驗智力的方法。全部都跟預測能力有關。

  • When I walk, every step, if I missed it by an eighth of an inch,

    那麼大腦理論的配方到底是什麼?

  • I'll know something has changed.

    首先,我們必須要有正確的架構。

  • You're constantly making predictions about your environment.

    而這個架構是記憶架構,

  • I'll talk about vision, briefly.

    而不是計算或是行為架構。是一個記憶架構。

  • This is a picture of a woman.

    你如何儲存並回憶這些序列與模式?一個時間與空間的模式。

  • When we look at people, our eyes saccade over two to three times a second.

    然後,如果在那個架構中,你有一群好的理論學者。

  • We're not aware of it, but our eyes are always moving.

    現在的生物學家通常不是好的理論學者。

  • When we look at a face, we typically go from eye to eye to nose to mouth.

    並不是總是這樣,但是通常是,生物學沒有建夠好理論的歷史習慣。

  • When your eye moves from eye to eye,

    我能找到最好的工作夥伴是物理學家,

  • if there was something else there like a nose,

    工程師和數學家,他們習於演算思維模式。

  • you'd see a nose where an eye is supposed to be and go, "Oh, shit!"

    然後他們必須學習解剖學和生理學。

  • (Laughter)

    你必須使這些理論在解剖層面上也是非常真實的。

  • "There's something wrong about this person."

    任何人當他跳出來告訴你他們關於大腦運行的理論

  • That's because you're making a prediction.

    但是不能解釋這些事情如何在腦內發生

  • It's not like you just look over and say, "What am I seeing? A nose? OK."

    還有腦內的連結關係是什麼,這就不是一個理論。

  • No, you have an expectation of what you're going to see.

    這就是我們在紅木神經科學研究所進行的研究。

  • Every single moment.

    我希望我能有更多時間來告訴你們,我們已經在這方面有了驚人的進步,

  • And finally, let's think about how we test intelligence.

    而我預期未來還能再回到這裡演講,

  • We test it by prediction: What is the next word in this ...?

    因此也許在不久的將來我將能有機會再次跟你們談談。

  • This is to this as this is to this. What is the next number in this sentence?

    我真的非常、非常興奮。這絕對不需要再五十年。

  • Here's three visions of an object. What's the fourth one?

    因此大腦理論究竟看起來會是什麼樣子?

  • That's how we test it. It's all about prediction.

    首先,它會是一個關於記憶的理論。

  • So what is the recipe for brain theory?

    跟電腦記憶體不一樣。它一點都不會像是電腦記憶體。

  • First of all, we have to have the right framework.

    會非常、非常的不同。它會是這些非常高維模式

  • And the framework is a memory framework,

    的記憶,就跟你從眼睛看到的東西一般。

  • not a computational or behavior framework,

    它會是序列的記憶。

  • it's a memory framework.

    你不能學習或是回憶序列外的任何事物。

  • How do you store and recall these sequences of patterns?

    一首歌必須按照時間的順序來聽,

  • It's spatiotemporal patterns.

    你也必須按照時間順序來播放。

  • Then, if in that framework, you take a bunch of theoreticians --

    然後這些順序就會自動被相關連在一起重播,因此如果我看到某些東西,

  • biologists generally are not good theoreticians.

    聽到某些東西,它讓我回一起相關的事物,然後就會自動重播。

  • Not always, but generally, there's not a good history of theory in biology.

    它是自動重播。然後對於未來所將輸入訊息的預測是我們所希望的輸出。

  • I've found the best people to work with are physicists,

    像我提過的,這個理論必須是生物學正確的。

  • engineers and mathematicians,

    它必須能被測試,然且你必須能夠建造它。

  • who tend to think algorithmically.

    如果你不能建造它,你就是不了解它。因此,最後一張投影片。

  • Then they have to learn the anatomy and the physiology.

    這最終會產生什麼結果?我們能夠真的建造出智能機器嗎?

  • You have to make these theories very realistic in anatomical terms.

    絕對可以。而且它會和一般人們所想的不同。

  • Anyone who tells you their theory about how the brain works

    我認為這無疑的會發生。

  • and doesn't tell you exactly how it's working

    首先,它會被建造,我們將會用矽建出這個東西。

  • and how the wiring works --

    跟我們用來建造以矽為原料的電腦記憶體同樣的技術,

  • it's not a theory.

    我們在這邊也同樣可以使用。

  • And that's what we do at the Redwood Neuroscience Institute.

    但是它們會是非常不同種類的記憶體。

  • I'd love to tell you we're making fantastic progress in this thing,

    然後我們將會將這些記憶體連結上感應器,

  • and I expect to be back on this stage sometime in the not too distant future,

    這些感應器將會經歷真實世界的即時數據,

  • to tell you about it.

    然後這些東西將會認識它們的環境。

  • I'm really excited; this is not going to take 50 years.

    而且你將會看到的第一批成品應該非常不可能會長得像個機器人。

  • What will brain theory look like?

    不是因為機器人沒有用而且人們可以建造機器人。

  • First of all, it's going to be about memory.

    但是機器人的部份是最難的部份。那是原始的大腦。非常的難。

  • Not like computer memory -- not at all like computer memory.

    這個新的腦袋要比原始腦袋簡單一些。

  • It's very different.

    所以我們將建造的第一個東西將會是不需要太多機器人特徵的東西。

  • It's a memory of very high-dimensional patterns,

    所以你將不會看到 C-3PO。

  • like the things that come from your eyes.

    你可能會比較常看到類似,例如,智慧車

  • It's also memory of sequences:

    真的能了解交通狀況和駕駛

  • you cannot learn or recall anything outside of a sequence.

    而且能夠解讀某些方向燈在閃的車輛過半分鐘後

  • A song must be heard in sequence over time,

    也許即將轉彎,如此這般的事情。

  • and you must play it back in sequence over time.

    (笑聲)

  • And these sequences are auto-associatively recalled,

    我們也可以設計智慧型保全系統。

  • so if I see something, I hear something, it reminds me of it,

    任何我們需要動用到腦力,但是不會執行太多機械動作的場合。

  • and it plays back automatically.

    這些將會是首先發生的情況。

  • It's an automatic playback.

    但是最終,沒什麼是不可能的。

  • And prediction of future inputs is the desired output.

    我不知道這將會發展的如何。

  • And as I said, the theory must be biologically accurate,

    我知道許多發明微處理器的人

  • it must be testable and you must be able to build it.

    如果你問他們,他們知道他們是在從事一些非常重要的事情,

  • If you don't build it, you don't understand it.

    但是他們不知道將會發生什麼事。

  • One more slide.

    他們不能預測到手機、網路等等這些事情的發生。

  • What is this going to result in?

    他們只知道像,嘿,他們將要建造計算機

  • Are we going to really build intelligent machines?

    和交通號誌燈。但是這將會很重要。

  • Absolutely. And it's going to be different than people think.

    同樣的道理,大腦理論和這些記憶體

  • No doubt that it's going to happen, in my mind.

    將會是非常基礎的科技,而且會

  • First of all, we're going to build this stuff out of silicon.

    在未來的一百年內帶來非常不可思議的改變。

  • The same techniques we use to build silicon computer memories,

    我最興奮的是我們將會如何將它們應用到科學研究上。

  • we can use here.

    我想我的時間已經到了,我超時了,所以我將要結束這次演講

  • But they're very different types of memories.

    就在這裡結束。

  • And we'll attach these memories to sensors,

  • and the sensors will experience real-live, real-world data,

  • and learn about their environment.

  • Now, it's very unlikely the first things you'll see are like robots.

  • Not that robots aren't useful; people can build robots.

  • But the robotics part is the hardest part. That's old brain. That's really hard.

  • The new brain is easier than the old brain.

  • So first we'll do things that don't require a lot of robotics.

  • So you're not going to see C-3PO.

  • You're going to see things more like intelligent cars

  • that really understand what traffic is, what driving is

  • and have learned that cars with the blinkers on for half a minute

  • probably aren't going to turn.

  • (Laughter)

  • We can also do intelligent security systems.

  • Anytime we're basically using our brain but not doing a lot of mechanics --

  • those are the things that will happen first.

  • But ultimately, the world's the limit.

  • I don't know how this will turn out.

  • I know a lot of people who invented the microprocessor.

  • And if you talk to them,

  • they knew what they were doing was really significant,

  • but they didn't really know what was going to happen.

  • They couldn't anticipate cell phones and the Internet

  • and all this kind of stuff.

  • They just knew like, "We're going to build calculators

  • and traffic-light controllers.

  • But it's going to be big!"

  • In the same way, brain science and these memories

  • are going to be a very fundamental technology,

  • and it will lead to unbelievable changes in the next 100 years.

  • And I'm most excited about how we're going to use them in science.

  • So I think that's all my time -- I'm over,

  • and I'm going to end my talk right there.

I do two things:

譯者: Bill Hsiung 審譯者: Calvin Chun-yu Chan

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

A2 初級 中文 美國腔 TED 大腦 理論 皮層 科學 預測

【TED】傑夫-霍金斯:腦科學將如何改變計算(Jeff Hawkins: How brain science will change computing)。 (【TED】Jeff Hawkins: How brain science will change computing (Jeff Hawkins: How brain science will change computing))

  • 51 11
    Zenn 發佈於 2021 年 01 月 14 日
影片單字