Placeholder Image

字幕列表 影片播放

  • Good morning.

    早安。

  • I'm here today to talk about autonomous flying beach balls.

    今天我想要來談一談

  • (Laughter)

    會自動飛行的海灘球。

  • No, agile aerial robots like this one.

    不是啦,是靈巧的飛行機器人,就像這一個。

  • I'd like to tell you a little bit about the challenges in building these,

    我想告訴大家製作這種東西的挑戰性

  • and some of the terrific opportunities for applying this technology.

    以及一些很棒的可能性

  • So these robots are related to unmanned aerial vehicles.

    來運用這種技術。

  • However, the vehicles you see here are big.

    這些機器人

  • They weigh thousands of pounds, are not by any means agile.

    算是一種無人的飛行器。

  • They're not even autonomous.

    不過,如你所見,它們的尺寸都比較大。

  • In fact, many of these vehicles are operated by flight crews

    它們都有幾千磅重,

  • that can include multiple pilots,

    一點都不靈巧。

  • operators of sensors,

    它們甚至並不是自動操作的。

  • and mission coordinators.

    事實上,大部分這些飛行器

  • What we're interested in is developing robots like this --

    是由飛行小組所操作,

  • and here are two other pictures --

    可能有好幾個駕駛員

  • of robots that you can buy off the shelf.

    同時在操控著感應器

  • So these are helicopters with four rotors,

    以及任務協調器。

  • and they're roughly a meter or so in scale,

    我們想要開發的機器人是像這個樣子 --

  • and weigh several pounds.

    左邊這裡另外兩張照片--

  • And so we retrofit these with sensors and processors,

    這些你都可以買到現成的。

  • and these robots can fly indoors.

    這些是一種具有四個螺旋槳的直昇機,

  • Without GPS.

    它們大約是一公尺大小,

  • The robot I'm holding in my hand

    也有好幾磅重。

  • is this one,

    於是我們將它們進行感應器與處理器的改良,

  • and it's been created by two students,

    讓這些機器人能夠在室內

  • Alex and Daniel.

    不靠GPS飛行。

  • So this weighs a little more than a tenth of a pound.

    我手中所拿的這個機器人

  • It consumes about 15 watts of power.

    就是這種飛行器,

  • And as you can see, it's about eight inches in diameter.

    這是由兩位學生所製作的,

  • So let me give you just a very quick tutorial

    Alex 以及 Daniel。

  • on how these robots work.

    它的重量大概是

  • So it has four rotors.

    十分之一磅左右。

  • If you spin these rotors at the same speed,

    它消耗的能量大概是15瓦。

  • the robot hovers.

    如你所見,

  • If you increase the speed of each of these rotors,

    它的直徑大概是8英吋大。

  • then the robot flies up, it accelerates up.

    讓我替大家簡單介紹一下

  • Of course, if the robot were tilted,

    這些機器人的原理。

  • inclined to the horizontal,

    這裡有四個螺旋槳。

  • then it would accelerate in this direction.

    當這四個螺旋槳速度相同時,

  • So to get it to tilt,

    機器人就會懸浮在空中。

  • there's one of two ways of doing it.

    如果這些螺旋槳速度增加,

  • So in this picture, you see that rotor four is spinning faster

    機器人就會飛起來,往上加速。

  • and rotor two is spinning slower.

    當然,如果機器人傾斜了,

  • And when that happens,

    相對於水平線來說,

  • there's a moment that causes this robot to roll.

    它就會往這個方向前進。

  • And the other way around,

    想讓它傾斜的話,這裡有兩種方法可以辦到。

  • if you increase the speed of rotor three and decrease the speed of rotor one,

    在這圖片中,

  • then the robot pitches forward.

    你可以看見4號螺旋槳轉速變快一點,

  • And then finally,

    而2號螺旋槳轉速變慢一點。

  • if you spin opposite pairs of rotors

    當這種情況發生時,

  • faster than the other pair,

    就會讓機器人進行翻轉。

  • then the robot yaws about the vertical axis.

    另一種狀況是,

  • So an on-board processor

    當3號螺旋槳的速度上升,

  • essentially looks at what motions need to be executed

    1號螺旋槳的速度下降時,

  • and combines these motions,

    機器人就會往前傾斜。

  • and figures out what commands to send to the motors --

    而最後一種可能,

  • 600 times a second.

    當對角線的兩組螺旋槳

  • That's basically how this thing operates.

    轉得比另外一組快時,

  • So one of the advantages of this design

    機器人就會在垂直方向偏移。

  • is when you scale things down,

    有一個內置處理器

  • the robot naturally becomes agile.

    一直在監控著該進行什麼動作,

  • So here, R is the characteristic length of the robot.

    並且將這些動作進行組合,

  • It's actually half the diameter.

    然後以每秒600次的速度

  • And there are lots of physical parameters that change as you reduce R.

    決定出該對這些螺旋槳下達什麼指令。

  • The one that's most important is the inertia,

    這就是它操作的基本概念。

  • or the resistance to motion.

    這種設計的其中一項優點是,

  • So it turns out the inertia, which governs angular motion,

    當你將它的尺寸縮小時,

  • scales as a fifth power of R.

    機器人自然就會變得很靈巧。

  • So the smaller you make R,

    這邊的 R

  • the more dramatically the inertia reduces.

    代表著機器人特性的長度。

  • So as a result, the angular acceleration,

    事實上是直徑的一半。

  • denoted by the Greek letter alpha here,

    而當你將 R 縮減時,

  • goes as 1 over R.

    許多物理係數就會跟著變動。

  • It's inversely proportional to R.

    其中最重要的

  • The smaller you make it, the more quickly you can turn.

    就是慣性或稱為阻止變動的抵抗力。

  • So this should be clear in these videos.

    結果,

  • On the bottom right, you see a robot performing a 360-degree flip

    控制了角運動的慣性,

  • in less than half a second.

    大小約是 R 的 5 次方。

  • Multiple flips, a little more time.

    所以當 R 變小時,

  • So here the processes on board

    慣性會急遽的下降。

  • are getting feedback from accelerometers and gyros on board,

    結果,角加速度,

  • and calculating, like I said before,

    這裡用希臘字母的 α 表示,

  • commands at 600 times a second,

    變成了 1 / R 。

  • to stabilize this robot.

    它和 R 成反比。

  • So on the left, you see Daniel throwing this robot up into the air,

    當尺寸越小時,它就越容易旋轉。

  • and it shows you how robust the control is.

    用這個影片說明會清楚一點。

  • No matter how you throw it,

    在右下角,你可以看見一個機器人

  • the robot recovers and comes back to him.

    正在進行 360 度翻轉

  • So why build robots like this?

    在不到 1/2 秒的時間內。

  • Well, robots like this have many applications.

    多次的翻轉,只要稍微長一點點的時間。

  • You can send them inside buildings like this,

    在這種狀況下,內置的處理器

  • as first responders to look for intruders,

    接收了加速器

  • maybe look for biochemical leaks,

    以及陀螺儀回傳的資訊,

  • gaseous leaks.

    然後進行計算,如先前所說,

  • You can also use them for applications like construction.

    用每秒600次的速度發出指令,

  • So here are robots carrying beams, columns

    讓機器人保持平衡。

  • and assembling cube-like structures.

    在左下角,Daniel 正將機器人拋向空中。

  • I'll tell you a little bit more about this.

    這會讓你知道它的操控能力有多強大。

  • The robots can be used for transporting cargo.

    不論你怎麼丟,

  • So one of the problems with these small robots

    機器人都能恢復平衡然後回到他的手中。

  • is their payload-carrying capacity.

    為什麼要將機器人設計成這樣呢?

  • So you might want to have multiple robots carry payloads.

    嗯,這種機器人有很多種運用方式。

  • This is a picture of a recent experiment we did --

    你可以將它派遣到這種建築物裡,

  • actually not so recent anymore --

    擔任先遣部隊去找出侵入者,

  • in Sendai, shortly after the earthquake.

    或是去找尋生化物質洩漏,

  • So robots like this could be sent into collapsed buildings,

    或是瓦斯洩漏等。

  • to assess the damage after natural disasters,

    你也可以將它們運用在

  • or sent into reactor buildings,

    例如建築上面。

  • to map radiation levels.

    這裡的機器人正運送著橫梁、柱子,

  • So one fundamental problem that the robots have to solve

    並且組合成立方體形狀的建築物。

  • if they are to be autonomous,

    我再告訴大家詳細一點。

  • is essentially figuring out how to get from point A to point B.

    這些機器人可以用來運送貨櫃。

  • So this gets a little challenging,

    但這些小機器人的困難在於

  • because the dynamics of this robot are quite complicated.

    它們對於重物的負載能力有限。

  • In fact, they live in a 12-dimensional space.

    所以如果你可能會希望能有多一點機器人

  • So we use a little trick.

    一起來搬運這個重物。

  • We take this curved 12-dimensional space,

    這是我們近期實驗的照片 --

  • and transform it into a flat, four-dimensional space.

    事實上已經不算是近期了 --

  • And that four-dimensional space consists of X, Y, Z,

    在地震過後的仙台市(日本)。

  • and then the yaw angle.

    這種機器人可以被派遣進入傾倒的建築物裡面

  • And so what the robot does,

    去評估天災造成的損害,

  • is it plans what we call a minimum-snap trajectory.

    或是派遣到反應爐裡

  • So to remind you of physics:

    去勘查輻射等級。

  • You have position, derivative, velocity;

    如果這些機器人想有自主能力的話,

  • then acceleration;

    它們必須先解決這個問題,

  • and then comes jerk,

    就是必須能夠判斷

  • and then comes snap.

    怎麼從 A 點到達 B 點。

  • So this robot minimizes snap.

    這有一點難度,

  • So what that effectively does,

    因為這個機器人的動力學是相當複雜的。

  • is produce a smooth and graceful motion.

    事實上,它們活在 12 維空間裡。

  • And it does that avoiding obstacles.

    所以我們運用了一些技巧。

  • So these minimum-snap trajectories in this flat space are then transformed

    我們將這個 12 維空間的曲線

  • back into this complicated 12-dimensional space,

    轉換成為

  • which the robot must do for control and then execution.

    一個平面的四維空間。

  • So let me show you some examples

    在這個四維空間之中,

  • of what these minimum-snap trajectories look like.

    包含了 X, Y, Z 還有偏移的角度。

  • And in the first video,

    所以這個機器人所做的是,

  • you'll see the robot going from point A to point B,

    去找出我們所說的最小震盪軌跡。

  • through an intermediate point.

    複習一下物理參數,

  • (Whirring noise)

    我們有位置,接著衍生出速度,

  • So the robot is obviously capable of executing any curve trajectory.

    以及加速度,

  • So these are circular trajectories,

    還有加加速度,

  • where the robot pulls about two G's.

    然後是震盪。

  • Here you have overhead motion capture cameras on the top

    所以機器人將震盪進行最小化。

  • that tell the robot where it is 100 times a second.

    這實際上的結果就是

  • It also tells the robot where these obstacles are.

    產生出柔順且優美的動作。

  • And the obstacles can be moving.

    它還可以用來避開障礙物。

  • And here, you'll see Daniel throw this hoop into the air,

    而這些最小震盪軌跡在這個平面空間中

  • while the robot is calculating the position of the hoop,

    又會被轉換回

  • and trying to figure out how to best go through the hoop.

    這個複雜的 12 維空間,

  • So as an academic,

    才能夠讓機器人去進行

  • we're always trained to be able to jump through hoops

    控制以及執行任務。

  • to raise funding for our labs,

    讓我給大家看一些例子

  • and we get our robots to do that.

    說明這些最小震盪軌跡是什麼樣子。

  • (Applause)

    在第一段影片中,

  • So another thing the robot can do

    你可以看見機器人經過中繼點

  • is it remembers pieces of trajectory

    由 A 點到達 B 點。

  • that it learns or is pre-programmed.

    所以機器人確實可以

  • So here, you see the robot combining a motion that builds up momentum,

    去執行任何曲線軌跡。

  • and then changes its orientation and then recovers.

    這些是環狀軌跡,

  • So it has to do this because this gap in the window

    機器人牽引著大約 2 G 的重力。

  • is only slightly larger than the width of the robot.

    在上面有個置頂動態影像攝影機,

  • So just like a diver stands on a springboard

    它會以每秒100次的速度告訴機器人自己在哪裡。

  • and then jumps off it to gain momentum,

    它也會告訴機器人這些障礙物的位置。

  • and then does this pirouette, this two and a half somersault through

    這些也可以是移動中的障礙物。

  • and then gracefully recovers,

    你將會看見 Daniel 將這個鐵環丟向空中,

  • this robot is basically doing that.

    機器人會計算鐵環的位置,

  • So it knows how to combine little bits and pieces of trajectories

    然後試著去找出穿過鐵環的最佳方式。

  • to do these fairly difficult tasks.

    身為一個學術人員,

  • So I want change gears.

    我們總是被訓練得能夠赴湯蹈火才能籌措研究經費,

  • So one of the disadvantages of these small robots is its size.

    所以我們也要我們的機器人做到。

  • And I told you earlier

    (掌聲)

  • that we may want to employ lots and lots of robots

    這機器人還能做另一件事,

  • to overcome the limitations of size.

    就是去記住軌跡的片段,

  • So one difficulty is:

    不論是它自行發現的或是事先輸入的。

  • How do you coordinate lots of these robots?

    所以你可以看見機器人會去

  • And so here, we looked to nature.

    組合一項動作

  • So I want to show you a clip of Aphaenogaster desert ants,

    讓它產生動量,

  • in Professor Stephen Pratt's lab, carrying an object.

    接著改變自己的行進方向在回復過來。

  • So this is actually a piece of fig.

    它必須這麼做,因為這個窗戶的缺口大小

  • Actually you take any object coated with fig juice,

    只比機器人的寬度稍微大一點。

  • and the ants will carry it back to the nest.

    就像是跳水選手站在跳板上,

  • So these ants don't have any central coordinator.

    接著會跳起來用以產生動量,

  • They sense their neighbors.

    然後快速旋轉,翻轉兩周半進行穿越,

  • There's no explicit communication.

    最後優雅的回復,

  • But because they sense the neighbors

    這就是機器人所做的事。

  • and because they sense the object,

    它懂得如何去結合這些零碎的軌跡

  • they have implicit coordination across the group.

    以達成這些相當困難的任務。

  • So this is the kind of coordination we want our robots to have.

    我想換個話題。

  • So when we have a robot which is surrounded by neighbors --

    這些小機器人的缺點之一就是尺寸。

  • and let's look at robot I and robot J --

    如同先前所提,

  • what we want the robots to do,

    我們想使用大量的機器人

  • is to monitor the separation between them,

    來解決尺寸上的限制。

  • as they fly in formation.

    但有個困難點是

  • And then you want to make sure

    你要如何去協調這些機器人呢?

  • that this separation is within acceptable levels.

    這部份我們觀察了自然界。

  • So again, the robots monitor this error

    我想讓大家看一段影片,

  • and calculate the control commands 100 times a second,

    關於沙漠盤腹蟻

  • which then translates into motor commands,

    在 Stephen Pratt 教授的實驗室裡搬運東西。

  • 600 times a second.

    事實上這是一小塊無花果。

  • So this also has to be done in a decentralized way.

    事實上你可以把任何東西沾附一層無花果汁

  • Again, if you have lots and lots of robots,

    螞蟻們就會將它搬回巢穴裡。

  • it's impossible to coordinate all this information centrally

    這些螞蟻並沒有中樞協調者。

  • fast enough in order for the robots to accomplish the task.

    它們能感覺到旁邊的鄰居們。

  • Plus, the robots have to base their actions only on local information --

    不用進行明確的溝通。

  • what they sense from their neighbors.

    但因為它們能感覺到鄰居,

  • And then finally,

    因為它們能感覺到東西,

  • we insist that the robots be agnostic to who their neighbors are.

    它們在團體間有著隱性協調能力。

  • So this is what we call anonymity.

    這種協調能力

  • So what I want to show you next is a video of 20 of these little robots,

    就是我們希望機器人能有的。

  • flying in formation.

    當我們的一個機器人

  • They're monitoring their neighbors' positions.

    被周圍的機器人包圍時 --

  • They're maintaining formation.

    看看機器人 I 和機器人 J --

  • The formations can change.

    我們希望機器人做的事情是

  • They can be planar formations,

    當它們以特定隊形飛行時

  • they can be three-dimensional formations.

    去偵測它們之間的距離。

  • As you can see here,

    你期望能夠確保

  • they collapse from a three-dimensional formation into planar formation.

    這個距離是在可接受的範圍內。

  • And to fly through obstacles,

    於是機器人們偵測著這個誤差值

  • they can adapt the formations on the fly.

    然後以每秒100次的速度

  • So again, these robots come really close together.

    去估算控制指令,

  • As you can see in this figure-eight flight,

    接著以每秒600次的速度對螺旋槳進行動作指令。

  • they come within inches of each other.

    這必須是在

  • And despite the aerodynamic interactions with these propeller blades,

    沒有中央控制的方式下進行。

  • they're able to maintain stable flight.

    當你有許許多多機器人的時候,

  • (Applause)

    想要以中央協調訊息的方式

  • So once you know how to fly in formation,

    快速的讓所有機器人完成任務是不可能的。

  • you can actually pick up objects cooperatively.

    再加上機器人們必須依靠

  • So this just shows that we can double, triple, quadruple

    它們自身去偵測到鄰近機器人

  • the robots' strength,

    以獲得訊息來進行動作。

  • by just getting them to team with neighbors, as you can see here.

    最後,

  • One of the disadvantages of doing that is, as you scale things up --

    我們堅持機器人必須無法預知

  • so if you have lots of robots carrying the same thing,

    鄰近機器人會是誰。

  • you're essentially increasing the inertia,

    也就是匿名的方式。

  • and therefore you pay a price; they're not as agile.

    接下來我將要給大家看

  • But you do gain in terms of payload-carrying capacity.

    一段影片

  • Another application I want to show you -- again, this is in our lab.

    關於20個這些小機器人

  • This is work done by Quentin Lindsey, who's a graduate student.

    以特定隊形進行飛行。

  • So his algorithm essentially tells these robots

    它們正在偵測鄰近機器人的位置。

  • how to autonomously build cubic structures

    它們正在保持著這個隊形。

  • from truss-like elements.

    這些隊形可以改變。

  • So his algorithm tells the robot what part to pick up,

    可以是平面的隊形,

  • when, and where to place it.

    也可以是三維空間的隊形。

  • So in this video you see --

    如你所見的,

  • and it's sped up 10, 14 times --

    它們從三維空間的隊形變換成平面的隊形。

  • you see three different structures being built by these robots.

    在穿越障礙物時,

  • And again, everything is autonomous,

    它們可以在飛行中調整隊形。

  • and all Quentin has to do

    這些機器人移動時真的靠得很近。

  • is to give them a blueprint of the design that he wants to build.

    在這個 8 字飛行隊形中,

  • So all these experiments you've seen thus far,

    它們的距離只有幾吋而已。

  • all these demonstrations,

    儘管在這些螺旋槳葉片之間

  • have been done with the help of motion-capture systems.

    有著空氣動力的交互影響,

  • So what happens when you leave your lab,

    它們仍然能維持穩定的飛行。

  • and you go outside into the real world?

    (掌聲)

  • And what if there's no GPS?

    一旦你知道要怎麼進行特定飛行隊形,

  • So this robot is actually equipped with a camera,

    你就能準確的協力拿起物體。

  • and a laser rangefinder, laser scanner.

    而這是要告訴大家

  • And it uses these sensors to build a map of the environment.

    藉由將機器人組合成小組後,

  • What that map consists of are features --

    我們可以將機器人們的力量

  • like doorways, windows, people, furniture --

    放大兩倍、三倍、四倍,就像是你將看到的這樣。

  • and it then figures out where its position is,

    但這樣做有一個缺點,

  • with respect to the features.

    當你將尺寸放大以後 --

  • So there is no global coordinate system.

    如果你有很多這些機器人載運同一個東西,

  • The coordinate system is defined based on the robot,

    你一定會有效地增加慣性,

  • where it is and what it's looking at.

    於是你將會付出代價,它們會失去靈巧性。

  • And it navigates with respect to those features.

    但你可以相對獲得載運負重能力。

  • So I want to show you a clip

    另一項我想給大家看的運用 --

  • of algorithms developed by Frank Shen and Professor Nathan Michael,

    這也是在我們的實驗室裡進行的。

  • that shows this robot entering a building for the very first time,

    這是由 Quentin Lindsey 完成的,他是一位研究生。

  • and creating this map on the fly.

    他的演算法告訴這些機器人們

  • So the robot then figures out what the features are,

    如何能夠自主性的

  • it builds the map,

    將綑狀的材料

  • it figures out where it is with respect to the features,

    建造成立體建築。

  • and then estimates its position 100 times a second,

    他的演算法告訴機器人

  • allowing us to use the control algorithms that I described to you earlier.

    該拿起哪一個部份,

  • So this robot is actually being commanded remotely by Frank,

    以及什麼時候該把它放在哪裡。

  • but the robot can also figure out where to go on its own.

    你可以在這短片中看到 --

  • So suppose I were to send this into a building,

    這是以 10 倍、14 倍速播放 --

  • and I had no idea what this building looked like.

    你可以看見這些機器人們建造了三種不同建築。

  • I can ask this robot to go in,

    再次提醒,一切都是自主性進行的,

  • create a map,

    而 Quentin 所做的是

  • and then come back and tell me what the building looks like.

    給這些機器人一張藍圖

  • So here, the robot is not only solving the problem

    記載著他想要的建築設計。

  • of how to go from point A to point B in this map,

    你所看見的這些實驗,

  • but it's figuring out what the best point B is at every time.

    這些展示,

  • So essentially it knows where to go

    都使用了動作擷取系統。

  • to look for places that have the least information,

    如果離開了實驗室,

  • and that's how it populates this map.

    走進真實世界會變成怎麼樣呢?

  • So I want to leave you with one last application.

    如果沒有 GPS 會怎樣呢?

  • And there are many applications of this technology.

    這個機器人

  • I'm a professor, and we're passionate about education.

    裝置了一具攝影機,

  • Robots like this can really change the way we do K-12 education.

    一具雷射H搜尋器,雷射掃描器。

  • But we're in Southern California,

    它使用這些感應器

  • close to Los Angeles,

    來製作一張周圍的地圖。

  • so I have to conclude with something focused on entertainment.

    這地圖然有著一些環境特徵 --

  • I want to conclude with a music video.

    例如大門、窗戶、

  • I want to introduce the creators, Alex and Daniel, who created this video.

    人、家具 --

  • (Applause)

    接著它會辨識出相對於這些環境特徵

  • So before I play this video,

    它所處的位置。

  • I want to tell you that they created it in the last three days,

    這裡並沒有整體座標系統。

  • after getting a call from Chris.

    座標系統是機器人自身定義出來的,

  • And the robots that play in the video are completely autonomous.

    藉由它所在的位置以及它所看到的東西。

  • You will see nine robots play six different instruments.

    接著它對這些環境特徵進行探索。

  • And of course, it's made exclusively for TED 2012.

    我想給大家看一段影片,

  • Let's watch.

    關於 Frank Shen 以及 Nathan Michael 教授

  • (Sound of air escaping from valve)

    所開發出來的演算法,

  • (Music)

    這個機器人第一次進入一個建築物,

  • (Whirring sound)

    然後在飛行中製作了這個地圖。

  • (Music)

    於是機器人知道環境特徵是什麼東西。

  • (Applause) (Cheers)

    它製作出地圖。

Good morning.

早安。

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋

B1 中級 中文 TED 機器人 螺旋槳 速度 位置 建築物

【TED】Vijay Kumar:會飛的機器人......和合作(會飛的機器人......和合作|Vijay Kumar) (【TED】Vijay Kumar: Robots that fly ... and cooperate (Robots that fly ... and cooperate | Vijay Kumar))

  • 708 42
    Max Lin 發佈於 2021 年 01 月 14 日
影片單字