Placeholder Image

字幕列表 影片播放

已審核 字幕已審核
  • Have you ever seen an atom?

    你有親眼看過原子嗎?

  • Seeing as everything is made of them, you have.

    你肯定有看過由它們所組成的東西。

  • But have you ever seen one on its own?

    但你有看過單獨的一顆原子嗎?

  • Over time, microscopes have become more and more powerful, allowing us to see deeper into the world of the ultra-small.

    顯微鏡技術的發展隨著時間演進變得越來越強大,讓我們能將極度微觀的世界看得更加清楚透徹。

  • Traditional light microscopes can be used to see things like these onion cells and the structures within them as they divide, pulling apart their chromosomes.

    傳統的光學顯微鏡能夠用來觀察像是這些洋蔥的細胞與結構,檢視它們將自身染色體分離的場面。

  • But scientists have come up with a whole host of clever methods to observe far smaller things.

    但科學家們想出了許多聰明的方式來觀察更為微小的事物。

  • Using beams of electrons instead of light, we can generate detailed images of chromosomes themselves.

    利用電子光束替代可見光,我們便能產生出具有更多細節的染色體圖像。

  • Recently, groups of scientists around the world are becoming able to see materials at the most fundamental scale: the atomic.

    而最近,世界各地的科學家團隊們已經能夠檢視物質最基礎的型態:原子。

  • One group from the University of California in Los Angeles have been getting up close and personal with nanoparticles of platinum, just a few nanometers across.

    一個來自加州大學洛杉磯分校的團隊正以極近距離觀察白金的奈米分子,其直徑僅只有數奈米而已。

  • Each of the tiny dots you can see here are actually individual platinum atoms.

    你在這裡看到的每一個小點都各自代表著單獨的白金原子。

  • But researchers didn't stop at a two-dimensional picture.

    但研究者們可不打算止步於二次元的平面圖像而已。

  • By imaging over 100 slices of the nanoparticle at different angles then removing the noise with a special filter, they were able to map the location of almost every atom.

    藉由從不同角度拍下一超過 100 張該奈米分子的圖像,接著以特殊的濾鏡來消除雜訊後,他們幾乎可以繪製出每一顆原子的位置。

  • The information was used to create a three-dimensional reconstruction of the whole particle in unprecedented detail.

    這個資訊之後被用來創造出該分子一個細節完整的 3D 重構模型。

  • It may look blurry, but this particle is estimated to contain over 27,000 atoms and so, like flies in a swarm, they appear to merge together.

    這個圖像看起來或許有些模糊,但這個分子估計含有超過 27,000 顆原子,就像一群在空中飛舞的蒼蠅一樣會時不時交會在一起。

  • Every so often, though, we see the platinum's atomic structure align, granting us a moment of clarity.

    而我們每隔一段時間便能看到白金的原子結構排列整齊,讓我們能短暫地看到清楚的圖像。

  • This technique is being used to analyse tiny irregularities in the structure of the particle called dislocations.

    這個技術被用來分析結構中稱為「差排」的微小錯位現象。

  • Dislocations are subtle, like the misalignment of the green and red layers of atoms in this particle.

    差排的狀況看似輕微,例如圖中分子綠色與紅色原子層的交錯。

  • But nonetheless, they can significantly change the properties of materials, with effects ranging from a change in the efficiency of LEDs to the strength of metal alloys.

    然而它們會顯著地改變物質的特性,影響範圍從改變 LED 的效率到降低金屬合金的強度都有可能。

  • Three-dimensional atomic-scale imaging like this is bettering our understanding of the structure of materials on this truly fundamental scale.

    像是這樣的 3D 原子等級的圖像,能夠讓我們更加了解物質在其真正基礎規模下的結構。

Have you ever seen an atom?

你有親眼看過原子嗎?

字幕與單字
已審核 字幕已審核

單字即點即查 點擊單字可以查詢單字解釋