字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 When you look up at the night sky, you're only seeing a tiny fraction of the estimated 當你仰望夜空時,你只看到了估計的一小部分。 septillion stars out there in the universe…and honestly it's not your fault. Even astronomers 宇宙中的七十億顆星星......說實話,這不是你的錯。即使是天文學家 have a hard time. But now the James Webb Space Telescope may 有一個艱難的時期。但現在,詹姆斯-韋伯太空望遠鏡可能會 just make things a lot easier and push the very limits of infrared light observation 只是讓事情變得更容易,並推動了紅外光觀察的極限。 to travel back over 13 billion years ago for a glimpse of our universe's first light. 為了一睹我們宇宙的第一道曙光,我們將穿越到130多億年前。 So first, what exactly is infrared light? Well, we can't see it, but we can feel it 那麼首先,究竟什麼是紅外光?嗯,我們看不到它,但我們可以感覺到它 as heat. On the electromagnetic spectrum, Infrared 作為熱量。在電磁波譜上,紅外線 lies right outside of the visible light section, as longer, redder wavelengths. You've probably 位於可見光部分之外,作為更長、更紅的波長。你可能已經 seen infrared light used in remote controls and even temperature guns commonly found during 我們看到,紅外光被用於遙控器,甚至是溫度槍,這些都是常見的。 the COVID-19 pandemic. But for astronomy, infrared light seems to COVID-19的大流行。但對於天文學來說,紅外光似乎是 excel in revealing the unseen. Since the beginning of the universe, physical 擅長於揭示看不見的東西。自宇宙誕生之初,物理 space has been in a constant state of expansion. Although stars and galaxies both keep their 空間一直處於不斷擴張的狀態。儘管恆星和星系都保持其 size, the shape and space between them continues to expand. 大小,它們之間的形狀和空間繼續擴大。 And as light travels through the ever growing reaches of space, it is stretched to longer 當光在不斷增長的空間中旅行時,它被拉長到更長的時間。 and longer wavelengths. So some of these wavelengths we as humans can actually see, 和更長的波長。是以,這些波長中的一些我們作為人類實際上可以看到。 as long as it falls along the visible light region, in what's known as our “window 只要它沿著可見光區域落下,在所謂的 "窗口 "裡,就可以看到。 of visibility”. Any wavelength extended beyond or falling 的能見度"。任何超出或下降的波長 short of that region is effectively invisible to us. 該地區的短板對我們來說實際上是看不見的。 And because of the estimated age of the universe, most of the light from our oldest stars actually 而且由於對宇宙年齡的估計,來自我們最古老的恆星的大部分光線實際上是 lies beyond the visible region since it has been constantly expanding for billions of 它位於可見區域之外,因為它在數十億年中一直在不斷地擴展。 years. This is known as Cosmological Redshift. Infrared technology allows us to look back 年。這被稱為宇宙學紅移。紅外線技術使我們能夠回看 to these oldest stars, all thanks to the unique ability of longer wavelengths to pass through 到這些最古老的恆星,所有這些都要歸功於較長波長的獨特能力,以通過 dense clouds of cosmic dust. Shorter wavelengths are usually blocked by these clouds, hindering 密集的宇宙塵埃雲。較短的波長通常被這些雲層所阻擋,阻礙了 astronomers' studies of the universe. And this new technology exposed infinite possibilities 天文學家對宇宙的研究。而這項新技術暴露了無限的可能性 of study. Even encouraging the launch of the first infrared observatory in 1983, the Infrared 的研究。甚至鼓勵在1983年發射第一個紅外線天文臺,即紅外線 Astronomical Satellite, which completed a full infrared survey of the sky. And by 1998 天文衛星,完成了對天空的全面紅外測量。而到了1998年 had helped usher in the identification of hundreds of thousands of new objects which 它幫助人們識別了數十萬個新的物體,而這些物體都是 "新 "的。 were previously unseen. This led to other infrared discoveries like the largest ring 以前沒有看到的。這導致了其他的紅外發現,如最大的環狀物 around Saturn and identifying one of the furthest supermassive black holes ever discovered. 圍繞著土星,確定了迄今發現的最遠的超大品質黑洞之一。 Now astronomers and engineers are pushing this science to the limit once again with 現在,天文學家和工程師們正在將這一科學再次推到極限,他們的工作是 the highly anticipated Webb telescope. The observatory hosts four scientific instruments 充滿期待的韋伯望遠鏡。該天文臺擁有四個科學儀器 and two detectors on board, allowing it to study near-infrared and mid-infrared wavelengths. 和船上的兩個探測器,使其能夠研究近紅外和中紅外波長。 The Near-infrared camera hosts on-board coronagraphs 近紅外相機承載了機載日冕儀 that can hone in on very faint objects even if they 可以磨練非常微弱的物體,即使它們是 are near extremely bright lights, similar to how you would hold your hand up in front 靠近極度明亮的燈光,類似於你將你的手舉起在面前 of the sun to see another object. Then there's the Near-Infrared Spectrograph, which has 的太陽,以看到另一個物體。然後是近紅外光譜儀,它有 a unique technology to analyze the spectrum of an object using a micro-shutter array. 一種獨特的技術,利用微型快門陣列分析物體的光譜。 This contains 100 microshutter cells, measuring as wide as a human hair. This technology reveals 這包含了100個微快門細胞,測量寬度與人類頭髮一樣。這項技術揭示了 physical properties of a target including chemical composition, mass, and temperature. 目標的物理特性,包括化學成分、品質和溫度。 Next up is the Mid-Infrared Instrument which will use its on board cameras and you guessed 接下來是中紅外儀器,它將使用其機載相機和你猜到的 it, mid-infrared light to provide amazing imagery, even more impressive than that of 它的中紅外光提供了驚人的影像,甚至比 "大象 "的影像更令人印象深刻。 the Hubble Space Telescope. And finally the Fine Guidance Sensor/Near InfraRed Imager 哈勃太空望遠鏡。最後是精細制導傳感器/近紅外成像儀 and Slitless Spectrograph will accurately find targets, investigate exoplanets, and 和無縫隙光譜儀將準確地找到目標,調查系外行星,以及 detect first light within star systems. Using these instruments, Webb's goal is to observe 探測恆星系統內的第一道光。利用這些儀器,韋伯的目標是觀察 early light in the universe over 13 billion years ago, essentially peering back in time 宇宙中130多億年前的早期光線,基本上是對時間的回望 to help piece together how the universe shifted from a state of helium and hydrogen to the 以幫助拼湊出宇宙如何從氦和氫的狀態轉移到 complex worlds we see today. And what's really cool is that it's a 我們今天看到的複雜世界。而真正酷的是,它是一個 huge international collaboration between NASA, European Space Agency and the Canadian Space 美國國家航空航天局、歐洲航天局和加拿大航天局之間的巨大國際合作。 Agency. This next generation observatory is a nod 機構。這個下一代的觀察站是一個點頭 to our endless curiosity as human beings to know more about how it all began. So now the 作為人類,我們有無盡的好奇心,想知道更多關於這一切是如何開始的。是以,現在的 fun part begins and I can't wait to see how our hard work has paid off when we get 有趣的部分開始了,我迫不及待地想看到我們的辛勤工作如何得到回報,當我們得到 those first images back... So what are some of your biggest questions 那些最初的影像回來...那麼,你最大的一些問題是什麼呢? about the Webb telescope? Let us know in the comments below and make sure to subscribe. Thanks for 關於韋伯望遠鏡?請在下面的評論中告訴我們,並請務必訂閱。謝謝 watching Seeker and I'll see you next time. 看著Seeker,我們下次見。
B2 中高級 中文 波長 宇宙 紅外線 物體 望遠鏡 恆星 為什麼詹姆斯-韋伯的紅外視覺是一個遊戲規則的改變者 (Why James Webb’s Infrared Vision is a Gamechanger) 12 1 Summer 發佈於 2021 年 10 月 13 日 更多分享 分享 收藏 回報 影片單字