Placeholder Image

字幕列表 影片播放

由 AI 自動生成
  • The standard model of particle physicswith its quarks, leptons, and bosons,  

    粒子物理學的標準模型,包括夸克、輕子和玻色子。

  • has served scientists incredibly well since it was  first put forward in 1967. For the most part, it  

    自1967年首次提出以來,它為科學家提供了令人難以置信的服務。在大多數情況下,它

  • has correctly predicted the existence of particles  with such precision that it's often hailed as the  

    準確地預測了粒子的存在,以至於它經常被譽為

  • most successful scientific theory of all time.  

    有史以來最成功的科學理論。

  • And yet scientists are not done with it, and they're 

    然而,科學家們還沒有完成這項工作,他們正在

  • constantly probing around its edges hunting  for new particles. In fact several teams of  

    不斷在其邊緣探測,尋找新的粒子。事實上,有幾個小組的

  • scientists are racing to discover what's known as  a Majorana fermion, which could be a major key to  

    科學家們正在競相發現被稱為馬約拉納費米子的東西,它可能是解決這個問題的一個主要關鍵。

  • settling some of the universe's biggest mysteries.  

    解決一些宇宙中最大的謎團。

  • Fermions are matter particles like the quarks 

    費米子是像夸克一樣的物質粒子

  • that make up protons and neutrons, as well as  electrons and neutrinos. Fermions also include  

    組成質子和中子,以及電子和中微子。費米子還包括

  • corresponding antiparticles with very similar  properties except they have opposite charge, so  

    相應的反粒子具有非常相似的特性,只是它們具有相反的電荷,所以

  • the antiparticle of a negatively charged electron  has a positive charge and is known as a positron.  

    帶負電的電子的反粒子帶正電,被稱為正電子。

  • Should a particle and its antiparticle meetthe two will annihilate each other, leaving behind

    如果一個粒子和它的反粒子相遇,兩者將相互湮滅,留下的是

  • only energy. But a Majorana fermion would  play by its own rules that could totally upend  

    只有能量。但馬約拉納費米子會按照它自己的規則行事,這可能會完全顛覆

  • our understanding of the Standard Model. In theory  a Majorana particle doesn't have a corresponding  

    我們對標準模型的理解。在理論上,一個馬約拉納粒子並沒有一個相應的

  • antiparticle; it is its own antiparticle! That  means when two of the same particles meet,  

    反粒子;它是它自己的反粒子!這意味著當兩個相同的粒子相遇時。

  • they could wipe each other out. So where would we even begin to look  

    他們可以互相消滅對方。是以,我們甚至可以從哪裡開始尋找

  • for a Majorana particle? As it happens  scientists have already identified a candidate  

    為一個馬約拉納粒子?恰好科學家們已經確定了一個候選人

  • from the Standard Model; the neutrino. Neutrinos  are bizarre little things for more reasons than  

    標準模型中的中微子。中微子是一種奇異的小東西,其原因不止是

  • just their famous ability to pass right through  whole planets. Unlike electrons and positrons  

    只是它們著名的直接穿過整個行星的能力。與電子和正電子不同的是

  • which both can have right or left-handed  spins, neutrinos all have left-handed spins  

    其中都可以有右手或左手的自旋,中微子都有左手的自旋

  • while antineutrinos are all right-handedTo explain this, one idea is that maybe  

    而反中微子都是右手的。 為了解釋這一點,一個想法是,也許

  • antineutrinos aren't antimatter after all, they're  just all the missing right-handed neutrinos

    反中微子畢竟不是反物質,它們只是所有失蹤的右手中微子。

  • Speaking of missing matter, if neutrinos  are Majorana particles they could account  

    談到缺失的物質,如果中微子是馬約拉納粒子,它們可以說明

  • for that too. One of the great mysteries of  the universe is why there's… well, anything

    也是為了這個。宇宙的偉大奧祕之一是為什麼會有......嗯,任何東西。

  • There's no reason we can solidly point to that  explains why there's more matter than antimatter  

    我們沒有任何理由可以確鑿地指出,可以解釋為什麼物質比反物質多。

  • today. There's nothing inherently special  about matter, and it probably formed in equal  

    今天。物質本身並沒有什麼特別之處,它可能是在同等條件下形成的。

  • amounts with antimatter after the Big Bang. That means by now everything should have been  

    宇宙大爆炸後的反物質數量。這意味著到現在一切都應該已經

  • annihilated, and yet here we are, made up  of and surrounded by regular matter, not  

    湮滅了,但我們在這裡,由常規物質組成,並被常規物質所包圍,不是

  • getting spontaneously annihilated all the timeIt's possible the imbalance is the result of a  

    一直在自發地被殲滅。 這種不平衡有可能是由於

  • particular way some atoms decay. Beta minus decay  is when a neutron in an unstable nucleus decays  

    一些原子衰變的特殊方式。β-負衰變是指不穩定原子核中的一箇中子衰變

  • into a proton and emits an electron and  antineutrino. An extremely rare event  

    變成一個質子,併發射出一個電子和反中微子。一個極其罕見的事件

  • known as double beta decay occurs when certain  nuclei have two neutrons decay simultaneously

    當某些核有兩個中子同時衰變時,就會發生被稱為雙β衰變。

  • You see where I'm going with this right? If  a neutrino and an antineutrino are actually  

    你知道我在說什麼了吧?如果一箇中微子和一個反中微子實際上是

  • the same particle capable of annihilating  itself, then sometimes double beta  

    同一個粒子能夠自相殘殺,那麼有時雙β

  • decays will emit only electrons. This net gain of particles could help  

    衰變將只釋放出電子。這種粒子的淨增益可以幫助

  • account for the imbalance between matter  and antimatter. Of course theorizing about  

    解釋物質和反物質之間的不平衡。當然,在理論上對

  • Majorana particles is one thing, actually  finding evidence of them is quite another

    馬約拉納粒子是一回事,實際找到它們的證據是另一回事。

  • While neutrinos are notoriously hard  to spot, neutrinoless double beta decay  

    雖然中微子是出了名的難以發現,但無中微子的雙β衰變

  • should be detectable just by adding up the energy  of the resulting two electrons and isotope

    僅僅通過將產生的兩個電子和同位素的能量相加就應該可以檢測到。

  • Really the problem lies with luck and timingRemember I said double beta decay is rare? Well  

    真的,問題在於運氣和時機。 還記得我說過雙β衰變是罕見的嗎?那麼

  • a double beta decay where the neutrinos annihilate  each other should be at least 100 times rarer

    中微子相互湮滅的雙β衰變應該至少稀少100倍。

  • That doesn't mean scientists  aren't still trying to spot it

    這並不意味著科學家們沒有仍在努力發現它。

  • The preferred approach involves getting a huge  amount of an isotope capable of double beta decay  

    首選的方法是獲得大量的能夠進行雙β衰變的同位素

  • and justwaiting. There are multiple experiments  active and planned using elements like germanium

    而只是......等待。有多個正在進行和計劃進行的實驗,使用鍺等元素

  • and xenon. They need to keep background  radiation and the energetic movement of atoms  

    和氙氣。他們需要保持背景輻射和原子的高能運動

  • from ruining the data so many of them are shielded  and kept cold, like the CUORE experiment in Italy  

    為了防止破壞數據,許多數據被屏蔽並保持低溫,就像意大利的CUORE實驗一樣。

  • which is just 0.01 kelvin above absolute zero. What's cooler than that? Maybe the fact that  

    這比絕對零度僅高出0.01開爾文。有什麼比這更冷的呢?也許是這樣的事實

  • it's protected by 4 metric tonnes of lead  recovered from a 2,000-year-old Roman shipwreck.  

    它受到從2000年前的羅馬沉船上找到的4公噸鉛的保護。

  • Seriously, the scientists borrowed it frommuseum. If these experiments don't see signs  

    說真的,科學家們是從博物館借來的。如果這些實驗沒有看到跡象

  • of neutrinoless double beta decay, then  maybe it's even rarer than predicted, and  

    的無中子雙β衰變,那麼也許它比預測的還要稀少,並且

  • even bigger tanks of decaying isotopes will be  necessary. Maybe it's not possible at all and  

    更大的衰變同位素罐將是必要的。也許這根本不可能,而且

  • the Majorana particle is a dead-end. Or, if luck  is on our side, maybe we'll see the telltale sign  

    馬約拉納粒子是一個死衚衕。或者,如果運氣在我們這邊,也許我們會看到提示信號

  • of two neutrinos erasing each other, and the  standard model and our understanding of the  

    的兩個中微子相互擦除,以及標準模型和我們對其的理解。

  • universe will get a little bit more complete.  

    宇宙會變得更完整一些。

  • Fun fact: Majorana Fermions are named for Ettore 

    有趣的事實:馬約拉納費米子是以埃托里命名的

  • Majorana, a physicist who mysteriously disappeared  without a trace in 1938. So about that  

    馬約拉納,一位在1938年神祕地消失得無影無蹤的物理學家。所以關於這一點

  • whole Standard Model beingThe Most Successful  Scientific Theory of All Time”. Turns out a recent  

    整個標準模型是 "有史以來最成功的科學理論"。事實證明,最近的一個

  • discovery has thrown a wrench in that. Amanda  has muon that here.

    發現已經在這一點上拋出了一個扳手。阿曼達在這裡說過。

  • So, what major mysteries about our universe do you want to see us cover next?

    那麼,你希望看到我們接下來報道關於我們宇宙的哪些重大謎團?

  • Let us know down in the comments. Be sure to subscribe, and I'll see you

    請在評論中告訴我們。請務必訂閱,我們會再見面的。

  • next time on Seeker.

    下一次是在Seeker上。

The standard model of particle physicswith its quarks, leptons, and bosons,  

粒子物理學的標準模型,包括夸克、輕子和玻色子。

字幕與單字
由 AI 自動生成

單字即點即查 點擊單字可以查詢單字解釋