## 字幕列表 影片播放

• Henry:  If you have polarized sunglasses, you have a quantum measurement device.

亨利：如果你有偏光的太陽鏡，你就有一個量子測量裝置。

• Grant: Each of these pieces of glass is what's called a "polarizing filter", which means

格蘭特。這些玻璃中的每一塊都是所謂的 "偏振濾鏡"，這意味著

• when a photon of light reaches the glass, it either passes through, or it doesn't.

當一個光子到達玻璃時，它要麼通過，要麼不通過。

• And whether or not it passes through is effectively a measurement of whether that photon is polarized

而它是否通過，實際上是對該光子是否被偏振的一種測量

• in a given direction.

在一個特定的方向上。

• Henry:  Try this: Find yourself several sets of polarized sunglasses.

亨利：試試這個。給自己找幾套偏光太陽鏡。

• Look through one set of sunglasses at some light source, like a lamp, then hold a second

通過一副太陽鏡看一些光源，如燈，然後拿著第二副太陽鏡看。

• polarizing filter, between you and the light.

在你和光線之間有一個偏振鏡。

• As you rotate that second filter, the lamp will look lighter and darker.

當你旋轉第二個過濾器時，燈看起來會變亮和變暗。

• It should look darkest when the second filter is oriented 90 degrees off from the first.

當第二個濾鏡的方向與第一個濾鏡偏離90度時，它應該看起來最暗。

• What you're observing is that the photons with polarization that allows them to pass

你所觀察到的是，具有偏振性的光子使它們能夠通過

• through a filter along one axis have a much lower probability of passing through a second

濾光片沿一個軸線通過的概率要低得多，因為它可以通過第二個軸線。

• filter along a perpendicular axisin principle 0%.

沿著垂直軸線的過濾器 - 原則上是0%。

• Grant: Here's where things get quantum-ly bizarre.

格蘭特。這裡是事情變得量子化的奇怪之處。

• All these filters do is remove lighttheyfilterit out.

這些過濾器所做的就是去除光線--它們 "過濾 "了光線。

• But if you take a third filter, orient it 45 degrees off from the first filter, and

但是，如果你拿著第三個過濾器，把它的方向與第一個過濾器偏離45度，並且

• put it between the two, the lamp will actually look brighter.

把它放在兩者之間，燈實際上會看起來更亮。

• This is not the middle filter generating more lightsomehow introducing another filter

這不是中間的過濾器產生更多的光--以某種方式引入另一個過濾器

• actually lets more light through.

實際上是讓更多的光線通過。

• With perfect filters, if you keep adding more and more in between at in-between angles,

有了完美的濾鏡，如果你在中間的角度不斷添加更多的東西。

• this trend continues – more light!

這一趨勢仍在繼續--更多的光!

• Henry:  This feels super weird.

亨利：這感覺超級奇怪。

• But it's not just weird that more light comes through; when you dig in quantitatively

但是，更多的光亮出現並不只是奇怪；當你從數量上進行挖掘時

• to exactly how much more comes through, the numbers don't just seem too high, they seem

確切地說，還有多少是通過的，這些數字不只是看起來太高，它們似乎是

• impossibly high.

不可能的高。

• And when we tug at this thread, it leads to an experiment a little more sophisticated

而當我們拽住這根線時，就會引出一個更復雜的實驗

• than this sunglasses demo that forces us to question some very basic assumptions we have

比起這個太陽鏡演示，它迫使我們質疑一些非常基本的假設，我們有

• about the way the universe workslike, that the results of experiments describe properties

關於宇宙的運作方式--比如，實驗的結果描述的屬性是什麼？

• of the thing you're experimenting on, and that cause and effect don't travel faster

實驗的東西，而且因果關係的傳播速度並不快。

• than the speed of light.

比光速更快。

• Grant:  Where we're headed is Bell's theorem: one of the most thought-provoking discoveries

格蘭特。 我們的方向是貝爾定理：最發人深省的發現之一

• in modern physics.

在現代物理學中。

• To appreciate it, it's worth understanding a little of the math used to represent quantum

為了欣賞它，值得了解一點用來表示量子的數學。

• states, like the polarization of a photon.

狀態，如光子的偏振。

• We actually made a second video showing more of the details for how this works, which

實際上，我們製作了第二個視頻，展示了更多關於如何工作的細節，其中包括

• you can find on 3blue1brown, but for now let's just hit the main points.

你可以在3blue1brown上找到，但現在我們只說說主要內容。

• First, photons are waves in a thing called the electromagnetic field, and polarization

首先，光子是一種叫做電磁場的東西中的波，而偏振

• just means the direction in which that wave is wiggling.

只是指該波擺動的方向。

• Grant: Polarizing filters absorb this wiggling energy in one direction, so the wave coming

格蘭特。偏振濾光片在一個方向上吸收了這種擺動的能量，是以，波的到來

• out the other side is wiggling purely in the direction perpendicular to the one where energy

在另一邊純粹是在垂直於能量的方向上搖擺。

• absorption is happening.

吸收正在發生。

• But unlike a water or sound wave, photons are quantum objects, and as such they either

但與水或聲波不同，光子是量子物體，是以它們要麼是

• pass through a polarizer completely, or not at all, and this is apparently probabilistic,

完全通過偏振片，或根本不通過，這顯然是概率問題。

• like how we don't know whether or not Schrodinger's Cat will be alive or dead until we look in

就像我們不知道薛定諤的貓會不會活著或死了，直到我們看一看

• the box.

盒子裡。

• Henry: For anyone uncomfortable with the nondeterminism of quantum mechanics, it's tempting to imagine

亨利。對於任何對量子力學的非確定性感到不舒服的人來說，都很容易想象到

• that a probabilistic event like this might have some deeper cause that we just don't

像這樣的概率事件可能有一些更深層次的原因，只是我們不知道。

• know yet.

還不知道。

• That there is somehidden variabledescribing the photon's state that would

有一些描述光子狀態的 "隱性變量"，它將

• tell us with certainty whether it should pass through a given filter or not, and maybe that

確切地告訴我們，它是否應該通過一個特定的過濾器，也許這

• variable is just too subtle for us to probe without deeper theories and better measuring

如果沒有更深入的理論和更好的測量，我們就無法探究這個變量。

• devices.

設備。

• Or maybe it's somehow fundamentally unknowable, but still there.

或者，也許它在某種程度上是根本不可知的，但仍然存在。

• Henry:  The possibility of such a hidden variable seems beyond the scope of experiment.

亨利：這種隱藏變量的可能性似乎超出了實驗的範圍。

• I mean, what measurements could possibly probe at a deeper explanation that might or

我的意思是，有什麼測量方法可以探測到更深層次的解釋，可能或

• might not exist?

可能不存在？

• And yet, we can do just that.

然而，我們可以做到這一點。

• Grant:...With sunglasses and polarization of light.

格蘭特：......用太陽鏡和偏振光。

• Grant: Let's lay down some numbers here.

格蘭特。讓我們在這裡列出一些數字。

• When light passes through a polarizing filter oriented vertically, then comes to another

當光線通過一個垂直方向的偏振濾光片，然後來到另一個

• polarizing filter oriented the same way, experiments show that it's essentially guaranteed to

偏振濾光片的方向相同，實驗表明，它基本上可以保證

• make it through the second filter.

使其通過第二個過濾器。

• If that second filter is tilted 90 degrees from the first, then each photon has a 0%

如果第二個過濾器與第一個過濾器傾斜90度，那麼每個光子有0%的

• chance of passing through.

通過的機會。

• And at 45 degrees, there's a 50/50 chance.

而在45度，有50/50的機會。

• Henry: What's more, these probabilities seem to only depend on the angle between the

亨利：更重要的是，這些概率似乎只取決於與 "我 "之間的角度。

• two filters in question, and nothing else that happened to the photon before, including

這兩個濾波器，而之前發生在光子身上的其他事情，包括

• potentially having passed through a different filter.

可能是通過了不同的過濾器。

• Grant: But the real numerical weirdness happens with filters oriented less than 45° apart.

格蘭特。但真正的數字怪異現象發生在濾光片的方向相距小於45°的情況下。

• For example, at 22.5 degrees, any photon which passes through the first filter has an 85%

例如，在22.5度時，任何通過第一個過濾器的光子都有85%的

• chance of passing through the second filter.

有機會通過第二個過濾器。

• To see where all these numbers come from, by the way, check out the second video.

順便看看所有這些數字是怎麼來的，請看第二個視頻。

• Henry: What's strange about that last number is that you might expect it to be more like

亨利：最後一個數字的奇怪之處在於，你可能期望它更像是

• halfway between 50% and 100% since 22.5° is halfway betweenand 45° – but it's

由於22.5°是0°和45°之間的一半，所以它是50%和100%之間的一半。

• significantly higher.

顯著提高。

• Henry: To see concretely how strange this is, let's look at a particular arrangement

亨利：為了具體瞭解這一點有多奇怪，讓我們看看一個特殊的安排

• of our three filters:  A, oriented vertically, B, oriented 22.5 degrees from vertical, and

我們的三個過濾器。 A，垂直方向，B，與垂直方向成22.5度，和

• C, oriented 45 degrees from vertical.

C，方向與垂直方向成45度。

• We're going to compare just how many photons get blocked when B isn't there with how

我們要比較的是，當B不存在時，有多少光子被阻擋，有多少光子被阻擋。

• many get blocked when B is there.

當B在那裡時，許多人被阻擋。

• When B is not there, half of those passing through A get blocked at C.  That is, filter

當B不存在時，一半通過A的人在C處被阻擋。

• C makes the lamp look half as bright as it would with just filter A.

C使燈看起來比只用濾鏡A時的亮度低一半。

• Henry: But once you insert B, like we said, 85% of those passing through A pass through

亨利：但是一旦你插入B，就像我們說的那樣，85%的通過A的人要通過

• B, which means 15% are blocked at B.  And 15% of those that pass through B are blocked

B，這意味著15%的人在B處被阻擋，而通過B的人中有15%被阻擋了

• at C. But how on earth does blocking 15% twice add up to the 50% blocked if B isn't there?

但是，如果B不在那裡，兩次封鎖的15%究竟是如何增加到封鎖的50%的？

• Well, it doesn't, which is why the lamp looks brighter when you insert filter B, but

嗯，不是的，這就是為什麼當你插入過濾器B時，燈看起來更亮，但

• it really makes you wonder how the universe is deciding which photons to let through and

這真的讓你想知道宇宙是如何決定讓哪些光子通過和

• which ones to block.

哪些是要阻止的。

• Grant: In fact, these numbers suggest that it's impossible for there to be some hidden

格蘭特。事實上，這些數字表明，不可能存在一些隱藏的

• variable determining each photon's state with respect to each filter.

變量確定每個光子相對於每個過濾器的狀態。

• That is, if each one has some definite answers to the three questionsWould it pass through

也就是說，如果每個人都對 "會不會通過 "這三個問題有一些明確的答案

• A”, “Would it pass through B” andWould it pass through C”, even before those measurements

A"、"會不會通過B "和 "會不會通過C"，即使在這些測量之前

做出。

• Grant: We'll do a proof by contradiction, where we imagine 100 photons who do have some

格蘭特。我們將做一個矛盾證明，我們想象100個光子，他們確實有一些

• hidden variable which, through whatever crazy underlying mechanism you might imagine, determines

隱性變量，通過你可能想象的任何瘋狂的基本機制，決定了

• their answers to these questions.

他們對這些問題的回答。

• And let's say all of these will definitely pass through A, which I'll show by putting

讓我們假設所有這些都將肯定通過A，我將通過把

• all 100 inside this circle representing photons that pass through A.

這個圓圈內的所有100個代表通過A的光子。

• Grant: To produce the results we see in experiments, about 85 of these photons would have to have

格蘭特。為了產生我們在實驗中看到的結果，這些光子中約有85個必須有

• a hidden variable determining that they pass through B, so let's put 85 of these guys

一個決定他們通過B的隱藏變量，所以讓我們把這些人中的85人

• in the intersection of A and B, leaving 15 in this crescent moon section representing

在A和B的交匯處，在這個新月部分留下15個代表

• photons that pass A but not B. Similarly, among those 85 that would pass through B,

同樣地，在那些會通過B的85個光子中，有多少個會通過A，而不是B。

• about 15% would get blocked by C, which is represented in this little section inside

大約15%會被C擋住，這在這個小部分中體現出來。

• the A and B circles, but outside the C circle.

在A和B圈內，但在C圈外。

• So the actual number whose hidden variable has them passing through both A and B but

是以，實際的數字，其隱藏變量有他們通過A和B，但

• not C is certainly no more than 15.

不是C肯定不超過15。

• Grant: But think of what Henry was just saying, what was weird was that when you remove filter

格蘭特。但想想亨利剛才說的，奇怪的是，當你去掉過濾器時

• B, never asking the photons what they think about 22.5 degree angles, the number that

B，從不問光子對22.5度角的看法，這個數字是

• get blocked at C seems much too high.

被擋在C位似乎太高了。

• So look back at our Venn diagram, what does it mean if a photon has some hidden variable

所以回頭看看我們的維恩圖，如果一個光子有一些隱藏的變量，這意味著什麼？

• determining that it passes A but is blocked at C?

確定它通過A但在C處被阻擋？

• It means it's somewhere in this crescent moon region inside circle A and outside circle

這意味著它是在這個月牙區域的某處，在圓圈A內，在圓圈外

• C.

C.

• Grant: Now, experiments show that a full 50 of these 100 photons that pass through A should

格蘭特。現在，實驗表明，這100個通過A的光子中，有整整50個應該是

• get blocked at C, but if we take into account how these photons would behave with B there,

在C處被阻擋，但如果我們考慮到這些光子在B處會有什麼表現。

• that seems impossible.

這似乎是不可能的。

• Either those photons would have passed through B, meaning they're somewhere in this region

要麼這些光子已經通過了B，意味著它們在這個區域的某個地方

• we talked about of passing both A and B but getting blocked at C, which includes fewer

我們談到的A和B都通過了，但在C處受阻，其中包括較少的

• than 15 photons.

超過15個光子。

• Or they would have been blocked by B, which puts them in a subset of this other crescent

或者他們會被B所阻擋，這使他們處於這個其他新月形的子集之中

• moon region representing those passing A and getting blocked at B, which has 15 photons.

月亮區域代表那些通過A並在B處被阻擋的光子，它有15個光子。

• So the number passing A and getting blocked at C should be strictly smaller than 15 +

是以，通過A並在C處受阻的數量應該嚴格小於15+。

• 15...but at the same time it's supposed to be 50?

15...但同時又應該是50？

• How does that work?

這怎麼能行呢？

• Grant: Remember, that number 50 is coming from the case where the photon is never measured

格蘭特。記住，這個數字50來自於光子從未被測量的情況。

• at B, and all we're doing is asking what would have happened if it was measured at

而我們所做的是問，如果在B處測量，會發生什麼？

• B, assuming that it has some definite state even when we don't make the measurement,

B，假設即使我們不進行測量，它也有一些確定的狀態。

• and that gives this numerical contradiction.

而這就給出了這個數字上的矛盾。

• Grant: For comparison, think of any other, non-quantum questions you might ask.

格蘭特。作為比較，想想你可能會問的任何其他非量子問題。

• Like, take a hundred people, and ask them if they like minutephysics, if they have a

比如，找一百個人，問他們是否喜歡微小的物理學，是否有

• beard, and if they wear glasses.

鬍子，以及他們是否戴眼鏡。

• Well, obviously everyone likes minutephysics.

嗯，顯然每個人都喜歡分鐘物理學。

• Then among those, take the number that don't have beards, plus the number who do have a

然後在這些人中，取沒有鬍子的人數，加上有鬍子的人數。

• beard but not glasses.

有鬍子但不戴眼鏡。

• That should greater than or equal to the number who don't have glasses.

這應該大於或等於不戴眼鏡的人數。

• I mean, one is a superset of the other.

我的意思是，一個是另一個的超集。

• But as absurdly reasonable as that is, some questions about quantum states seem to violate

但是，儘管這很荒謬地合理，但一些關於量子態的問題似乎違反了

• this inequality, which contradicts the premise that these questions could have definite answers,

這種不平等，這與這些問題可能有明確答案的前提相矛盾。

• right?

對嗎？

• Henry:  Well...Unfortunately, there's a hole in that argument.

亨利：嗯......不幸的是，這種說法有一個漏洞。

• Drawing those Venn diagrams assumes that the answer to each question is static and

繪製這些維恩圖時，假定每個問題的答案都是靜態的，並且

• unchanging.

不變的。

• But what if the act of passing through one filter changes how the photon will later interact

但是，如果通過一個過濾器的行為改變了光子以後的互動方式呢？

• with other filters?

與其他過濾器？

• Then you could easily explain the results of the experiment, so we haven't proved

那麼你可以很容易地解釋實驗的結果，所以我們還沒有證明

• hidden variable theories are impossible; just that any hidden variable theory would have

隱性變量理論是不可能的；只是任何隱性變量理論都會有

• to have the interaction of the particle with one filter affect the interaction of the particle

讓粒子與一個過濾器的相互作用影響粒子的相互作用

• with other filters.

與其他過濾器。

• Henry:  We can, however, rig up an experiment where the interactions cannot affect each

然而，我們可以建立一個實驗，在這個實驗中，相互作用不能影響彼此。

• other without faster than light communication, but where the same impossible numerical weirdness

在沒有比光速更快的通信的情況下，另一個人也可以在這裡進行通信，但同樣不可能的數字怪異現象

• persists.

持續存在。

• The key is to make photons pass not through filters at different points in time, but at

關鍵是要使光子不是在不同的時間點通過過濾器，而是在

• different points in space at the same time.

在同一時間，空間的不同點。

• And for this, you need entanglement.

而為此，你需要糾纏。

• Henry: For this video, what we'll mean when we say two photons are "entangled" is that

亨利。在這段視頻中，當我們說兩個光子被 "糾纏 "時，我們的意思是

• if you were to pass each one of them through filters oriented the same way, either both

如果你以同樣的方式將它們每個都通過過濾器，那麼，要麼都是

• pass through, or both get blocked.

通過，或者兩者都被擋住了。

• That is, they behave the same way when measured along the same axis.

也就是說，沿同一軸線測量時，它們的行為是相同的。

• And this correlated behavior persists no matter how far away the photons and filters are from

而且這種相關的行為持續存在，無論光子和過濾器離我們有多遠

• each other, even if there's no way for one photon to influence the other.

互相影響，即使一個光子沒有辦法影響另一個光子。

• Unless, somehow, it did so faster than the speed of light.

除非，以某種方式，它的速度超過了光速。

• But that would be crazy.

但那會很瘋狂。

• Grant:  So now here's what you do for the entangled version of our photon-filter experiment.

格蘭特。 所以現在你要做的是我們的光子過濾器實驗的糾纏版本。

• Instead of sending one photon through multiple polarizing filters, you'll send entangled

與其將一個光子送過多個偏振濾鏡，不如將糾纏的

• pairs of photons to two far away locations, and simultaneously at each location, randomly

將成對的光子送到兩個遙遠的地方，並同時在每個地方隨機地

• choose one filter to put in the path of that photon.

選擇一個過濾器放在該光子的路徑上。

• Doing this many times, you'll collect a lot of data about how often both photons in

這樣做了很多次，你會收集到很多數據，比如說，這兩個光子的頻率是多少？

• an entangled pair pass through the different combinations of filters.

糾纏的一對通過不同組合的過濾器。

• Henry:  But the thing is, you still see all the same numbers as before.

亨利：但問題是，你仍然看到所有和以前一樣的數字。

• When you use filter A at one site and filter B at the other, among all those that pass

當你在一個站點使用過濾器A，在另一個站點使用過濾器B時，在所有通過的

• through filter A, about 15% have an entangled partner that gets blocked at B.  Likewise,

同樣，在通過過濾器A時，大約15%的人有一個糾纏的夥伴，在B處被阻斷。

• if they're set to B and C, about 15% of those that do pass through B have an entangled

如果它們被設置為B和C，那麼，在通過B的人中，大約有15%的人有一個糾纏的

• partner that gets blocked by C.  And with settings A and C, half of those that through

而在設置A和C的情況下，有一半的人通過了A和C。

• A get blocked at C.

A在C處受阻。

• Grant: Again, if you think carefully about these numbers, they seem to contradict the

格蘭特。同樣，如果你仔細思考這些數字，它們似乎與之相矛盾。

• idea that there can be some hidden variable determining the photon's states.

認為可以有一些隱藏的變量決定光子的狀態。

• Here, draw the same Venn Diagram as before, which assumes that each photon actually does

在此，請畫出與之前相同的維恩圖，其中假設每個光子實際上是

• have some definite answers to the questionsWould it pass through A”, “Would it

對 "它是否會通過A"、"它是否會通過B"、"它是否會通過C "等問題有一些明確的答案。

• pass through B” andWould it pass through C”.

通過B "和 "會不會通過C"。

• Grant: If, as Henry said, 15% of those that pass through A get blocked at B, we should

格蘭特。如果像亨利說的那樣，通過A的人中有15%在B處被阻擋，那麼我們應該

• nudge these circles a bit so that only 15% of the area of circle A is outside circle

把這些圓推一下，使圓A的面積只有15%在圓外。

• B.  Likewise, based on the data from entangled pairs measured at B and C, only 15% of the

B. 同樣地，根據在B和C測得的糾纏對的數據，只有15%的

• photons which pass through B would get blocked at C, so this region here inside B and outside

通過B的光子會在C處被阻擋，所以B內和B外的這個區域

• C needs to be sufficiently small.

C需要足夠的小。

• Grant: But that really limits the number of photons that would pass through A and get

格蘭特。但這確實限制了通過A並得到的光子的數量。

• blocked by C.  Why?

被C擋住了，為什麼？

• Well the region representing photons passing A and blocked at C is entirely contained inside

那麼代表光子通過A並在C處受阻的區域完全包含在

• the previous two.

前兩個。

• And yet, what quantum mechanics predicts, and what these entanglement experiments verify,

然而，量子力學的預測，以及這些糾纏實驗所驗證的。

• is that a full 50% of those measured to pass through A should have an entangled partner

是指那些被測量通過A的整整50%應該有一個糾纏的夥伴

• getting blocked at C.

在C處被阻擋。

• Grant: If you assume that all these circles have the same size, which means any previously

格蘭特。如果你假設所有這些圓都有相同的大小，這意味著任何以前的

• unmeasured photon has no preference for one of these filters over the others, there is

未測量的光子對這些過濾器中的一個沒有偏好，有

• literally no way to accurately represent all three of these proportions in a diagram like

從字面上看，沒有辦法在這樣的圖表中準確地表示所有這三種比例。

• this, so it's not looking good for hidden variable theories.

這一點，所以對於隱性變量理論來說，情況並不樂觀。

• Henry:  Again, for a hidden variable theory to survive, this can only be explained if

亨利。 同樣，對於隱性變量理論的生存，只有在以下情況下才能得到解釋

• the photons are able to influence each other based on which filters they passed through.

光子能夠根據它們所通過的過濾器而相互影響。

• But now we have a much stronger result, because in the case of entangled photons,

但現在我們有一個更強大的結果，因為在糾纏的光子的情況下。

• this influence would have to be faster than light.

這種影響必須比光速更快。

• Henry: The assumption that there is some deeper underlying state to a particle even if it's

亨利：假設一個粒子有一些更深的基本狀態，即使它是

• not being probed is calledrealism”.

不被探知的情況被稱為 "現實主義"。

• And the assumption that faster than light influence is not possible is calledlocality”.

而比光速快的影響是不可能的這一假設被稱為 "定位性"。

• What this experiment shows is that either realism is not how the universe works, or

這個實驗所顯示的是，要麼現實主義不是宇宙的運作方式，要麼

• locality is not how the universe works, or some combination (whatever that means).

局部性不是宇宙的運作方式，或者說是某種組合（不管那是什麼意思）。

• Henry: Specifically, it's not that quantum entanglement appears to violate realism or

亨利：具體來說，不是說量子糾纏似乎違反了現實主義或

• the speed of light while actually being locally real at some underlying level - it the contradictions

光的速度，而實際上在某些基本層面上是在地真實的--它的矛盾在於

• in this experiment show it CANNOT be locally real, period.

在這個實驗中顯示，它不可能是在地真實的，期間。

• Grant: What we've described here is one example of what's called a Bell inequality.

格蘭特。我們在這裡所描述的是所謂的貝爾不平等的一個例子。

• It's a simple counting relationship that must be obeyed by a set of questions with

這是一個簡單的計數關係，必須服從於一組問題，有

• definite answers, but which quantum states seem to disobey.

明確的答案，但量子態似乎不聽話。

• Grant: In fact, the mathematics of quantum theory predicts that entangled quantum states

格蘭特。事實上，量子理論的數學預測，糾纏的量子態

• should violate Bell inequalities in exactly this way.

應該正是以這種方式違反了貝爾不等式。

• John Bell originally put out the inequalities and the observation that quantum mechanics

約翰-貝爾最初提出了不等式和量子力學的觀察結果

• would violate them in 1964.

將在1964年違反這些規定。

• Henry: Since then, numerous experiments have put it into practice, but it turns out it's

亨利：從那時起，無數的實驗將其付諸實踐，但事實證明，它是

• quite difficult to get all your entangled particles and detectors to behave just right,

要讓你所有的糾纏粒子和探測器表現得恰到好處是相當困難的。

• which can mean observed violations of this inequality might end with certainloopholes

這可能意味著觀察到的對這種不平等的侵犯可能以某些 "漏洞 "而告終

• that might leave room for locality and realism to both be true.

這可能為地方性和現實主義都是真的留下了空間。

• The first loophole-free test happened only in 2015.

第一次無漏洞測試只發生在2015年。

• Grant: There have also been numerous theoretical developments in the intervening years, strengthening

格蘭特。在這幾年裡，也有許多理論上的發展，加強了

• Bell's and other similar results (that is, strengthening the case against local realism).

貝爾的和其他類似的結果（也就是說，加強了反對局部現實主義的理由）。

• Henry: In the end, here's what I find crazy: Bell's Theorem is an incredibly deep result

亨利：最後，我覺得瘋狂的地方在這裡。貝爾定理是一個令人難以置信的深刻結果

• upending what we