字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 Superconductors are the secret sauce that many designs for quantum computers, 超導體是很多量子計算機設計的祕訣。 particle accelerators, and fusion reactors depend on to function. 粒子加速器和聚變反應堆賴以運轉的。 But most superconductors need to be kept at ultra cold temperatures, 但大多數超導體需要在超低溫下保存。 a drawback that severely limits their use. 一個嚴重限制其使用的缺點。 Now for the first time, researchers have created a material that acts as a superconductor at nearly room temperature. 現在,研究人員首次創造出了一種在接近室溫下充當超導體的材料。 Unfortunately, there's still a catch. 可惜的是,還是有陷阱的。 Superconductors are aptly named; they're materials that conduct electricity with zero resistance, 超導體的名字很貼切,它是一種零電阻導電的材料。 meaning a current can move through the material without losing any energy. 意味著電流可以在不損失任何能量的情況下穿過材料。 They also expel magnetic fields thanks to a phenomenon called the Meissner effect. 由於一種叫做邁斯納效應的現象,它們也會排出磁場。 If an external magnetic field is weak enough, it cannot penetrate the material, 如果外部磁場足夠弱,它就無法穿透材料。 but stronger magnetic fields interact with superconductors in one of two ways, depending on the kind of superconductor. 但較強的磁場與超導體的相互作用有兩種方式,取決於超導體的種類。 Type-I materials fall out of their superconducting state if an applied magnetic field is strong enough, 如果施加的磁場足夠強,I型材料就會脫離超導狀態。 but Type-II superconductors allow applied magnetic fields to pass through them while still maintaining 0 electrical resistance. 但II型超導體允許外加磁場通過它們,同時仍保持0電阻。 Type-II materials are what make super strong electromagnets possible, II型材料是超強電磁鐵的基礎。 like the kind that steer particles through the 27 kilometer loop of the Large Hadron Collider. 就像那種引導粒子通過大型強子對撞機27公里的循環。 Normal magnets wouldn't be able to guide the particles around tight turns, 普通的磁鐵就無法引導顆粒繞緊彎。 so without superconducting magnets the collider would have to be over 90 kilometers longer to reach the same energy level. 是以,如果沒有超導磁鐵對撞機將不得不超過90公里長,以達到相同的能量水準。 All of this amazing potential is unleashed only when superconductors are cooled below a critical temperature. 只有當超導體被冷卻到臨界溫度以下時,所有這些驚人的潛力才會被釋放出來。 For the Large Hadron Collider's main magnets, that temperature is -271 degrees Celsius, 對於大型強子對撞機的主磁體來說,這個溫度是零下271攝氏度。 almost 2 degrees above absolute zero. 幾乎高於絕對零度2度。 Quantum computers like this one made by IBM have to keep their handful of quantum bits even colder, just 0.015 Kelvin. 像IBM公司製造的這種量子計算機,必須讓它們的少量量子比特保持更冷的溫度,只有0.015開爾文。 These extreme temperatures present extreme problems. 這些極端的溫度帶來了極端的問題。 When the LHC started its multi-year planned upgrade in 2018, bringing the machine up to room temperature. 當LHC在2018年開始其多年計劃的升級,使機器達到室溫。 Useful quantum computers with millions of physical quantum bits are currently beyond our reach 擁有數百萬物理量子比特的有用量子計算機目前還無法實現。 because no one has made a practical method to scale up the cooling. 因為沒有人做出切實可行的方法來擴大冷卻規模。 For all these reasons, a room temperature superconductor is considered the holy grail of condensed matter physics. 由於所有這些原因,室溫超導體被認為是凝聚態物理學的聖盃。 And we've been slowly marching up the thermometer for some time now. 而我們已經在溫度計上慢慢行進了一段時間。 The first superconductor discovered in 1911 was mercury wire chilled to 4.2 Kelvin. 1911年發現的第一種超導體是冷卻到4.2開爾文的水銀線。 By the 80s, scientists had found materials with a critical temperature of 30 Kelvin, 到了80年代,科學家們發現了臨界溫度為30開爾文的材料。 and by the mid 90s they had gotten it up to a balmy 164 K, or about -109 degrees Celsius. 到了90年代中期,他們的氣溫已經上升到了164K,也就是零下109攝氏度左右。 It took until 2015 to prove an idea from 1968 that stated hydrogen could act as a superconductor 直到2015年,才證明了1968年的一個想法,即氫氣可以作為超導體。 above room temperature if it was under enough pressure. 如果在足夠的壓力下,室溫以上。 To pre-compress the hydrogen, researchers combined it with sulfur, 為了預先壓縮氫氣,研究人員將其與硫磺相結合。 then squeezed the molecule between the tips of two diamonds to achieve a pressure of 155 gigapascals, 然後將分子擠壓在兩顆鑽石的尖端之間,達到155千兆帕的壓力。 more than a million times the atmospheric pressure you and I are experiencing right now. 超過你我現在所經歷的大氣壓力的一百萬倍。 The material still had to be kept at 203 Kelvin, but we were getting warmer. 材料仍然要保持在203開爾文,但我們的溫度越來越高。 Finally, this year one experiment has turned up the heat and the pressure. 終於,今年的一個實驗把熱度和壓力都加大了。 Researchers started with a mixture of carbon and sulfur in between the diamonds of their vise. 研究人員首先在其虎鉗的鑽石之間加入了碳和硫的混合物。 Next they piped in the gases hydrogen, hydrogen sulfide, and methane. 接下來,他們用管道把氫氣、硫化氫和甲烷等氣體輸進去。 When the ingredients were hit with a laser, they reacted to form clear crystals. 當這些成分被脈衝光擊中後,它們會發生反應,形成透明的晶體。 Then they cranked up the pressure. 然後他們加大了壓力。 At 148 gigapascals, the crystals became superconductors at 147 Kelvin. 在148千兆帕時,晶體在147開爾文時成為超導體。 The researchers ratcheted up the pressure even higher, to 267 gigapascals, 研究人員將壓力進一步提高,達到267千兆帕。 and found the material had the properties of a superconductor at 287 Kelvin. 並發現該材料在287開爾文時具有超導體的特性。 Heck, at this point we can just switch back to Celsius, that's almost 14 degrees baby! 哼,這時候我們可以直接換回攝氏度,那差不多是14度的寶貝! Room temperature! 室溫! Well sort of, more like a really chilly room. But still, that's incredible progress. 嗯,算是吧,更像是一個非常寒冷的房間。但是,這仍然是令人難以置信的進步。 Just because we've made these materials in a lab doesn't mean they're useful just yet. 我們在實驗室裡做了這些材料,並不意味著它們就有用了。 Remember those superconductors developed in the 80s and 90s? 還記得80、90年代研製的那些超導體嗎? They work at relatively higher temperatures than those in the Large Hadron Collider, 它們的工作溫度比大型強子對撞機中的溫度相對更高。 yet the accelerator doesn't use them. 但加速器卻不使用它們。 That's because so-called “high temperature” superconductors are difficult to manufacture in usable amounts. 這是因為所謂的 "高溫 "超導體很難製造出可用的數量。 One very recent proposal for a fusion reactor, MIT's SPARC, 最近有一個關於核聚變反應堆的提案,麻省理工學院的SPARC。 could be a huge breakthrough in the field and it's only possible because these materials 可能是該領域的巨大突破,而之所以能夠實現,是因為這些材料 are just becoming viable for large scale use. 剛剛開始可行的大規模使用。 In its current state, the superconducting crystals the researchers made in their diamond vise 在目前的狀態下,研究人員在他們的金剛石老虎鉗中製作的超導晶體。 don't really have a practical application. 並沒有真正的實際應用。 The researchers' ultimate goal is to create a material that keeps its properties even when the pressure is released, 研究人員的最終目標是創造一種即使在釋放壓力時也能保持其特性的材料。 and they're not quite sure yet how to get there from here. 而他們還不太清楚如何從這裡到達那裡。 When a usable room temperature superconductor finally becomes a reality it'll be a game changer 當可用的室溫超導體最終成為現實時,將改變遊戲規則。 that will likely have a huge impact on our daily lives, 將可能對我們的日常生活產生巨大的影響。 but until then I wouldn't go near a superconductor without a lot of layers on. 但在那之前,我不會去接近一個沒有很多層的超導體。 To learn more about why high temperature superconductors might make fusion power possible, 要了解更多關於高溫超導體為什麼可能使核聚變發電成為可能。 check out my video on MIT's proposed SPARC reactor here. 檢查出我的視頻在麻省理工學院的建議SPARC反應器在這裡。 What's a use for superconductors we haven't mentioned? 超導體有什麼用處我們還沒有提到? Let us know in the comments below. Make sure to subscribe and as always, thanks for watching. 請在下面的評論中告訴我們。請務必訂閱,並一如既往地感謝您的觀看。
B2 中高級 中文 材料 磁場 溫度 量子 壓力 氫氣 世界上第一個室溫超導體來了。 (The World’s First Room Temperature Superconductor Is Here) 13 2 林宜悉 發佈於 2020 年 11 月 06 日 更多分享 分享 收藏 回報 影片單字