字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 Quantum computers could be a massive technological leap forward, 量子計算機可能是一次大規模的技術飛躍。 solving problems in seconds that would take “ordinary” supercomputers millennia to crunch. 在幾秒鐘內解決 "普通 "超級計算機需要幾千年才能解決的問題。 But one major problem holding them back is how sensitive they are to interference. 但阻礙它們的一個主要問題是它們對干擾的敏感度。 Now, researchers in Finland claim they've created a crucial component that drastically cuts down on error-inducing noise, 現在,芬蘭的研究人員聲稱,他們已經創造了一個關鍵的組件,可以大大減少錯誤引起的噪音。 getting us closer to large-scale quantum computers. 讓我們離大規模量子計算機越來越近。 And what wonder-material was the key to this breakthrough? 那是什麼神奇的材料是這一突破的關鍵呢? What else but graphene. 除了石墨烯還有什麼。 You may have heard of quantum computers because we kind of talk about them all the time here on Seeker. 你可能聽說過量子計算機,因為我們在探索者上一直在談論它們。 But in case you're new here, here's a quick recap: 但如果你是新來的,這裡有一個快速的總結。 Classical computers like the chip in your phone or laptop use electricity flowing through silicon switches to represent ones and zeroes. 經典的計算機,如手機或筆記本電腦中的芯片,使用流經硅開關的電來表示1和0。 A single one or zero is called a bit. 單一的1或0稱為位。 Quantum computers use quantum bits, or qubits, which can represent a one, a zero, or any combination of the two simultaneously. 量子計算機使用的是量子比特,或稱qubits,它可以同時表示一個1、一個0或兩者的任何組合。 This is thanks to the quantum phenomenon known as superposition. 這要歸功於被稱為疊加的量子現象。 Another property, quantum entanglement, allows for qubits to be linked together, 另一個特性,量子糾纏,可以讓誇比特聯繫在一起。 and changing the state of one qubit will also change the state of its entangled partner. 而改變一個qubit的狀態也會改變其糾纏夥伴的狀態。 Thanks to these two properties, quantum computers of a few dozen qubits can outperform massive supercomputers 得益於這兩個特性,幾十誇比特的量子計算機可以勝過龐大的超級計算機。 in certain very specific tasks. 在某些非常具體的任務中。 But there are several issues holding quantum computers back from solving the world's toughest problems, 但有幾個問題阻礙了量子計算機解決世界上最棘手的問題。 one of them is how prone qubits are to error. 其中之一就是qubits有多容易出錯。 Qubits are very sensitive to their surroundings, and it's easy to accidentally cause a one to flip to a zero, Qubits對周圍環境非常敏感,很容易不小心導致1翻成0。 or knock the qubit out of superposition and throw off the calculations. 或將qubit打出疊加,拋開計算。 Two qubits interacting with each other have a pretty abysmal error rate of about 0.5%, 兩個量子相互作用的錯誤率相當糟糕,約為0.5%。 meaning there's one error for every two hundred operations or so. 意思是每兩百次左右的操作就有一次錯誤。 By contrast, the silicon in your laptop makes a mistake once every 1017 operations. 相比之下,你的筆記本電腦中的硅每1017次操作就會犯一次錯誤。 And as more qubits are added to the quantum circuit, the error rate goes up. 而隨著量子電路中加入更多的qubits,錯誤率也會上升。 There are many sources of error, one of which comes from measuring the energy state of the qubits themselves. 誤差的來源有很多,其中之一來自於測量誇比特本身的能量狀態。 Most quantum computers measure this using the voltage induced by the qubit, 大多數量子計算機都是利用qubit引起的電壓來測量的。 which requires a lot of power and circuitry to amplify the signal. 這需要大量的功率和電路來放大信號。 To make matters worse, the voltage measurements carry noise that can throw off the readout. 更糟糕的是,電壓測量帶有噪聲,可能會影響讀數。 Aiming to tackle this problem, researchers in Finland set out to try a different approach. 為了解決這個問題,芬蘭的研究人員開始嘗試一種不同的方法。 Instead of measuring voltage, the scientists tried using a detector called a bolometer. 科學家們嘗試使用一種名為 "螺栓計 "的檢測器來代替測量電壓。 The active element of a bolometer heats up when exposed to a tiny bit of radiation from a qubit 當暴露在來自四分位體的微小輻射下時,螺栓計的活性元件會發熱。 and reflects some microwave radiation back. 並反射一些微波輻射回來。 Measuring that change in radiation can also measure the energy state of the qubit, 測量這種輻射的變化,也可以測量出qubit的能量狀態。 but with much less circuitry, power consumption, and noise. 但電路、功耗和噪音卻小得多。 The team had previously made a bolometer with an active element made out of a gold-palladium alloy 此前,該團隊曾製作過一種用金鈀合金製成的活性元素的螺栓計。 that demonstrated unprecedented low noise levels. 顯示出前所未有的低噪音水準。 But to be useful for quantum computing, a bolometer needs to detect small changes in energy quickly, 但為了對量子計算有用,螺栓計需要快速檢測能量的微小變化。 and the gold-palladium alloy just wasn't fast enough. 而金鈀合金就是不夠快。 So the researchers turned to graphene, a lattice of carbon atoms just one atom thick. 於是,研究人員轉向了石墨烯,一種只有一個原子厚的碳原子晶格。 Graphene has a very low heat capacity, so it reacts to changes and takes measurements in under a microsecond. 石墨烯的熱容量很低,所以它對變化的反應,在微秒內就能進行測量。 That's 100 times faster than the previous gold-palladium bolometer and on par with the speed of current voltage detection technology, 這比以前的金鈀栓儀快了100倍,與目前電壓檢測技術的速度相當。 all while drastically cutting down on energy use, size, and error-inducing noise. 同時大大降低了能源使用、尺寸和錯誤引起的噪音。 So, big question time: is this the thing that finally does it? 所以,大問題時間:這東西是不是終於做到了? Are we there yet? 我們到了嗎? Is the quantum dawn upon us? 量子的曙光是否已經來臨? Man I hate being the downer at the end of every quantum computer video but, no, not yet. 我討厭在每一個量子計算機視頻的結尾都做一個沮喪的人,但是,不,還不是。 There are many, many hurdles yet to overcome. 還有很多很多的障礙需要克服。 Solving the error rate is just one of them, and graphene bolometers may help... but like I said, there are many factors that cause errors. 解決誤差率只是其中之一,石墨烯栓塞儀可能會有幫助......但就像我說的,造成誤差的因素有很多。 Still, that's no reason to get discouraged. 不過,這也不是灰心的理由。 The journey to quantum supercomputers is a long one and along the way there will be lots of discoveries, optimizations, 量子超級計算機的征程是漫長的,在這條路上會有很多發現、優化。 and clever tricks that inch us forward. 和聰明的招數,讓我們寸步難行。 Graphene bolometers may not be the one thing that propels the technology from curiosity to world-changing, 石墨烯螺栓計可能不是推動這項技術從好奇心到改變世界的一個東西。 but every little qubit helps. 但每一個小的qubit幫助。 Another breakthrough could be making qubits that don't need to be supercooled. 另一個突破可能是製造不需要過冷的qubits。 Check out my video on so-called hot qubits here. 在這裡看看我的視頻,所謂的熱呱呱。 If you had a quantum computer, what would you use it for? 如果你有一臺量子計算機,你會用它做什麼? Me, I'd see if it can run Crysis. 我,我想看看它能不能運行孤島危機。 Let us know in the comments, be sure to subscribe, and I'll see you next time on Seeker. 請在評論中告訴我們,一定要訂閱,我們下期《求是》見。
B2 中高級 中文 量子 計算機 石墨烯 電壓 電路 噪音 石墨烯如何幫助我們構建更大更好的量子計算機? (How Graphene Could Help Us Build Bigger and Better Quantum Computers) 13 3 Summer 發佈於 2020 年 10 月 30 日 更多分享 分享 收藏 回報 影片單字