字幕列表 影片播放 列印所有字幕 列印翻譯字幕 列印英文字幕 In 2009, two researchers ran a simple experiment. 譯者: Lilian Chiu 審譯者: Pui-Ching Siu They took everything we know about our solar system 2009 年,兩位研究者 做了一項簡單的實驗。 and calculated where every planet would be up to 5 billion years in the future. 他們用上了我們 對太陽系所知的一切, To do so they ran over 2,000 numerical simulations 去計算五十億年後 with the same exact initial conditions except for one difference: 每一顆行星的所在。 the distance between Mercury and the Sun, modified by less than a millimeter 為了做到這一點,他們進行了 超過兩千次的數值模擬, from one simulation to the next. 每一次的初始條件都相同, 除了一個差異: Shockingly, in about 1 percent of their simulations, 從一次模擬進入到下一次模擬時, Mercury's orbit changed so drastically that it could plunge into the Sun 就把水星和太陽之間的 距離增或減一公釐。 or collide with Venus. 驚人的是,大約 1% 的模擬中, Worse yet, 水星的軌道大大改變, in one simulation it destabilized the entire inner solar system. 大到有可能會衝進太陽 This was no error; the astonishing variety in results 或撞上金星。 reveals the truth that our solar system may be much less stable than it seems. 更糟的是,在一次模擬中, Astrophysicists refer to this astonishing property of gravitational systems 它讓整個內太陽系變得很不穩定。 as the n-body problem. 這不是錯誤;結果會有 這麼驚人的多樣性, While we have equations that can completely predict 表示我們的太陽系事實上 the motions of two gravitating masses, 可能沒有看起來這麼穩定。 our analytical tools fall short when faced with more populated systems. 天體物理學家把這種 重力系統的驚人特質 It's actually impossible to write down all the terms of a general formula 稱為「N 體問題」。 that can exactly describe the motion of three or more gravitating objects. 雖然我們有方程式可以完全預測 Why? The issue lies in how many unknown variables an n-body system contains. 兩個互相受引力作用的 質量會如何運動, Thanks to Isaac Newton, we can write a set of equations 但面臨更多物體的系統時, to describe the gravitational force acting between bodies. 我們的分析工具就有所不足了。 However, when trying to find a general solution for the unknown variables 事實上,不可能寫出一條通式 in these equations, 來精準描述互相受引力作用的 三個(或以上)物體如何運動。 we're faced with a mathematical constraint: 為什麼? for each unknown, there must be at least one equation 問題在於 N 體系統中 that independently describes it. 有多少個未知的變數。 Initially, a two-body system appears to have more unknown variables 因為牛頓的功勞, 我們可以寫出一組方程式 for position and velocity than equations of motion. 來描述兩個物體之間的引力作用。 However, there's a trick: 然而,當試圖為 這些方程式中的未知變數 consider the relative position and velocity of the two bodies 找出通解時, with respect to the center of gravity of the system. 我們面臨一個數學限制: This reduces the number of unknowns and leaves us with a solvable system. 凡是有一個未知變數, With three or more orbiting objects in the picture, everything gets messier. 就必須要有至少一條 獨立的方程式來描述它。 Even with the same mathematical trick of considering relative motions, 最初看似兩體系統未知的 we're left with more unknowns than equations describing them. 位置和速度變量的數目 There are simply too many variables for this system of equations 多於運動方程式的。 to be untangled into a general solution. 然而有一招: But what does it actually look like for objects in our universe 考量兩個物體相對於 to move according to analytically unsolvable equations of motion? 系統引力中心的位置和速度。 A system of three stars— like Alpha Centauri— 這樣就能減少未知變數的數目, 讓它變成有解的系統。 could come crashing into one another or, more likely, 若系統中有三個以上的繞行物體, some might get flung out of orbit after a long time of apparent stability. 情況就會更亂了。 Other than a few highly improbable stable configurations, 即使採用同樣的數學招式 去考量相對運動, almost every possible case is unpredictable on long timescales. 未知變數的數目仍多於 描述它們的方程式數目。 Each has an astronomically large range of potential outcomes, 簡單來說就是這個 方程式系統有太多變數, dependent on the tiniest of differences in position and velocity. 因此無法用一個通解來解決。 This behaviour is known as chaotic by physicists, 但我們宇宙中的物體 and is an important characteristic of n-body systems. 根據無解的運動方程式運轉, Such a system is still deterministic— meaning there's nothing random about it. 實際上看起來會是什麼模樣? If multiple systems start from the exact same conditions, 三個恆星的系統—— 比如南門二—— they'll always reach the same result. 有可能會撞上彼此, 或更有可能的情況是, But give one a little shove at the start, and all bets are off. 在經過長時間明顯的穩定之後, 有些恆星可能會被拋出軌道。 That's clearly relevant for human space missions, 除了少數極不可能發生的 穩定組態之外, when complicated orbits need to be calculated with great precision. 幾乎每一個可能的情況 Thankfully, continuous advancements in computer simulations 在長期來看都是無法預測的。 offer a number of ways to avoid catastrophe. 每一個情況在天文學上 都有廣泛的可能結果, By approximating the solutions with increasingly powerful processors, 會根據位置及速度的 微小差距而有所不同。 we can more confidently predict the motion of n-body systems on long time-scales. 物理學家將這種行為視為「混亂」, And if one body in a group of three is so light 是 N 體系統的重要特徵之一。 it exerts no significant force on the other two, 這種系統仍是確定性的系統, the system behaves, with very good approximation, as a two-body system. 意即它並不隨機。 This approach is known as the “restricted three-body problem.” 如果有多個系統 都從同樣的條件開始, It proves extremely useful in describing, for example, 它們一定會達到同樣的結果。 an asteroid in the Earth-Sun gravitational field, 但把初始條件稍微改變一點點, or a small planet in the field of a black hole and a star. 原本的預測就都不準了。 As for our solar system, you'll be happy to hear 這很顯然會影響到人類的太空任務, that we can have reasonable confidence in its stability 因為需要非常精確地 計算複雜的軌道。 for at least the next several hundred million years. 謝天謝地,電腦模擬的持續進步 Though if another star, 提供了數種避免大災難的方式。 launched from across the galaxy, is on its way to us, 透過使用越來越強大的 處理器來找出近似解, all bets are off. 我們便能更有信心地預測
B1 中級 中文 方程式 變數 物體 恆星 太陽系 數目 Newton’s three-body problem explained - Fabio Pacucci 22 0 林宜悉 發佈於 2020 年 10 月 24 日 更多分享 分享 收藏 回報 影片單字