Placeholder Image

字幕列表 影片播放

  • In 2009, two researchers ran a simple experiment.

    譯者: Lilian Chiu 審譯者: Pui-Ching Siu

  • They took everything we know about our solar system

    2009 年,兩位研究者 做了一項簡單的實驗。

  • and calculated where every planet would be up to 5 billion years in the future.

    他們用上了我們 對太陽系所知的一切,

  • To do so they ran over 2,000 numerical simulations

    去計算五十億年後

  • with the same exact initial conditions except for one difference:

    每一顆行星的所在。

  • the distance between Mercury and the Sun, modified by less than a millimeter

    為了做到這一點,他們進行了 超過兩千次的數值模擬,

  • from one simulation to the next.

    每一次的初始條件都相同, 除了一個差異:

  • Shockingly, in about 1 percent of their simulations,

    從一次模擬進入到下一次模擬時,

  • Mercury's orbit changed so drastically that it could plunge into the Sun

    就把水星和太陽之間的 距離增或減一公釐。

  • or collide with Venus.

    驚人的是,大約 1% 的模擬中,

  • Worse yet,

    水星的軌道大大改變,

  • in one simulation it destabilized the entire inner solar system.

    大到有可能會衝進太陽

  • This was no error; the astonishing variety in results

    或撞上金星。

  • reveals the truth that our solar system may be much less stable than it seems.

    更糟的是,在一次模擬中,

  • Astrophysicists refer to this astonishing property of gravitational systems

    它讓整個內太陽系變得很不穩定。

  • as the n-body problem.

    這不是錯誤;結果會有 這麼驚人的多樣性,

  • While we have equations that can completely predict

    表示我們的太陽系事實上

  • the motions of two gravitating masses,

    可能沒有看起來這麼穩定。

  • our analytical tools fall short when faced with more populated systems.

    天體物理學家把這種 重力系統的驚人特質

  • It's actually impossible to write down all the terms of a general formula

    稱為「N 體問題」。

  • that can exactly describe the motion of three or more gravitating objects.

    雖然我們有方程式可以完全預測

  • Why? The issue lies in how many unknown variables an n-body system contains.

    兩個互相受引力作用的 質量會如何運動,

  • Thanks to Isaac Newton, we can write a set of equations

    但面臨更多物體的系統時,

  • to describe the gravitational force acting between bodies.

    我們的分析工具就有所不足了。

  • However, when trying to find a general solution for the unknown variables

    事實上,不可能寫出一條通式

  • in these equations,

    來精準描述互相受引力作用的 三個(或以上)物體如何運動。

  • we're faced with a mathematical constraint:

    為什麼?

  • for each unknown, there must be at least one equation

    問題在於 N 體系統中

  • that independently describes it.

    有多少個未知的變數。

  • Initially, a two-body system appears to have more unknown variables

    因為牛頓的功勞, 我們可以寫出一組方程式

  • for position and velocity than equations of motion.

    來描述兩個物體之間的引力作用。

  • However, there's a trick:

    然而,當試圖為 這些方程式中的未知變數

  • consider the relative position and velocity of the two bodies

    找出通解時,

  • with respect to the center of gravity of the system.

    我們面臨一個數學限制:

  • This reduces the number of unknowns and leaves us with a solvable system.

    凡是有一個未知變數,

  • With three or more orbiting objects in the picture, everything gets messier.

    就必須要有至少一條 獨立的方程式來描述它。

  • Even with the same mathematical trick of considering relative motions,

    最初看似兩體系統未知的

  • we're left with more unknowns than equations describing them.

    位置和速度變量的數目

  • There are simply too many variables for this system of equations

    多於運動方程式的。

  • to be untangled into a general solution.

    然而有一招:

  • But what does it actually look like for objects in our universe

    考量兩個物體相對於

  • to move according to analytically unsolvable equations of motion?

    系統引力中心的位置和速度。

  • A system of three starslike Alpha Centauri

    這樣就能減少未知變數的數目, 讓它變成有解的系統。

  • could come crashing into one another or, more likely,

    若系統中有三個以上的繞行物體,

  • some might get flung out of orbit after a long time of apparent stability.

    情況就會更亂了。

  • Other than a few highly improbable stable configurations,

    即使採用同樣的數學招式 去考量相對運動,

  • almost every possible case is unpredictable on long timescales.

    未知變數的數目仍多於 描述它們的方程式數目。

  • Each has an astronomically large range of potential outcomes,

    簡單來說就是這個 方程式系統有太多變數,

  • dependent on the tiniest of differences in position and velocity.

    因此無法用一個通解來解決。

  • This behaviour is known as chaotic by physicists,

    但我們宇宙中的物體

  • and is an important characteristic of n-body systems.

    根據無解的運動方程式運轉,

  • Such a system is still deterministicmeaning there's nothing random about it.

    實際上看起來會是什麼模樣?

  • If multiple systems start from the exact same conditions,

    三個恆星的系統—— 比如南門二——

  • they'll always reach the same result.

    有可能會撞上彼此, 或更有可能的情況是,

  • But give one a little shove at the start, and all bets are off.

    在經過長時間明顯的穩定之後, 有些恆星可能會被拋出軌道。

  • That's clearly relevant for human space missions,

    除了少數極不可能發生的 穩定組態之外,

  • when complicated orbits need to be calculated with great precision.

    幾乎每一個可能的情況

  • Thankfully, continuous advancements in computer simulations

    在長期來看都是無法預測的。

  • offer a number of ways to avoid catastrophe.

    每一個情況在天文學上 都有廣泛的可能結果,

  • By approximating the solutions with increasingly powerful processors,

    會根據位置及速度的 微小差距而有所不同。

  • we can more confidently predict the motion of n-body systems on long time-scales.

    物理學家將這種行為視為「混亂」,

  • And if one body in a group of three is so light

    是 N 體系統的重要特徵之一。

  • it exerts no significant force on the other two,

    這種系統仍是確定性的系統,

  • the system behaves, with very good approximation, as a two-body system.

    意即它並不隨機。

  • This approach is known as therestricted three-body problem.”

    如果有多個系統 都從同樣的條件開始,

  • It proves extremely useful in describing, for example,

    它們一定會達到同樣的結果。

  • an asteroid in the Earth-Sun gravitational field,

    但把初始條件稍微改變一點點,

  • or a small planet in the field of a black hole and a star.

    原本的預測就都不準了。

  • As for our solar system, you'll be happy to hear

    這很顯然會影響到人類的太空任務,

  • that we can have reasonable confidence in its stability

    因為需要非常精確地 計算複雜的軌道。

  • for at least the next several hundred million years.

    謝天謝地,電腦模擬的持續進步

  • Though if another star,

    提供了數種避免大災難的方式。

  • launched from across the galaxy, is on its way to us,

    透過使用越來越強大的 處理器來找出近似解,

  • all bets are off.

    我們便能更有信心地預測

In 2009, two researchers ran a simple experiment.

譯者: Lilian Chiu 審譯者: Pui-Ching Siu

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋