字幕列表 影片播放 由 AI 自動生成 列印所有字幕 列印翻譯字幕 列印英文字幕 Here's a puzzler for you — what's it called when a system stays the same temperature... 這裡給大家出個難題--當一個系統保持同樣的溫度時,這叫什麼...... even when it has an energy input that should be making it hotter? 即使它的能量輸入應該使它更熱? I think most peoples' answers to that question would be, 'uh, it's called impossible'. But it's actually a real thing! 我想大多數人對這個問題的回答都會是,'呃,這叫不可能'。但其實這是一個真實的事情! It's called dynamical localization— 這就是所謂的動態定位--。 and physicists have now pushed this phenomenon further than we've ever seen before. 和物理學家們現在已經把這種現象推到了前所未有的程度。 But of course, with something funky like this, we're not talking about a normal something... 不過當然,像這種時髦的東西,我們說的可不是一般的東西...... we're talking about a quantum something. 我們正在談論一個量子的東西。 Just so we're all on the same page, there are two different types of physics: classical and quantum. 只是為了讓我們都在同一頁面上,有兩種不同類型的物理學:經典和量子。 These categories have two very different answers to the following question: 對於下面的問題,這些類別有兩種截然不同的答案。 if the state of a dynamic system is known initially and then something is done to it, 如果一個動態系統的狀態最初是已知的,然後對它做一些事情。 how will the state of the system change over time in response to that action? 隨著時間的推移,系統的狀態會因這一行動而發生怎樣的變化? In classical mechanics, the answer is what we call deterministic. 在經典力學中,答案就是我們所說的確定性。 This means that if hypothetically, we knew all the variables involved in a given system, 這意味著,如果假設我們知道某個系統中涉及的所有變量。 and we know all the variables involved in the action taken on that system, 而我們知道在該系統上採取的行動所涉及的所有變量。 then we know for sure what the result of the action on the system will be. 那麼我們就可以確定對系統的作用結果是什麼。 But of course, in reality, we never know any of these variables exactly, 但當然,在現實中,我們永遠無法確切知道這些變量。 so even the classical dynamics can get pretty funky. 所以即使是經典的動力學也會變得非常時髦。 But quantum systems are on a whole 'nother level of unpredictable. 但量子系統的不可預知性是另一個層次的。 It's really hard to understand what's going on 真的很難理解發生了什麼事 because what's at play in the system may not exist in any certain classical phase... 因為在系統中發揮作用的東西可能不存在於任何特定的經典階段... ... at least, until we try to measure it with our classical tools and from our classical perspective. 至少,在我們嘗試用我們的經典工具,從我們的經典角度來衡量它之前。 That's because quantum-mechanically, 那是因為量子力學。 the multitude of possible states is unimaginably richer than what we experience in our classical world. 眾多可能的狀態比我們在古典世界中體驗到的豐富得難以想象。 And those states are also fragile 而這些國家也很脆弱 and appear to us under measurements as multiple classically-thinkable states at the same time. 並在測量下以多種經典思維狀態同時出現在我們面前。 So, as you might imagine, this means the classical and quantum worlds tend to be at odds with one another. 所以,正如你所想象的那樣,這意味著經典世界和量子世界往往是相互矛盾的。 But the kicker is — they are both our world. 但最重要的是--它們都是我們的世界。 So, finding an overarching theory that reconciles the quantum and classical worlds — 所以,找到一個調和量子世界和經典世界的總體理論--。 that would be kinda a huge deal. 這將是一個挺大的交易。 Now, that's a VERY general explanation of the differences between the two, 現在,這是對兩者之間差異的一個非常籠統的解釋。 but it helps bring us to our story, 但它有助於把我們帶到我們的故事。 which takes place at the intersection of these two realms. 其中發生在這兩個境界的交匯處。 See, in the classical world, a result of the second law of thermodynamics 看,在古典世界裡,熱力學第二定律的一個結果。 is that hot things will always cool down unless there's something to stop them. 是熱的東西總會冷卻下來,除非有東西阻止它們。 So, for example, if you put a hot object next to a cold object, 所以,舉個例子,如果你把一個熱的物體放在一個冷的物體旁邊。 the cold object will absorb some of the energy emitted by the hot object 冷物體會吸收熱物體的部分能量。 and become warmer, while the hot object becomes cooler. 並變得更熱,而熱的物體則變得更冷。 That's a basic example of a physics concept called entropy. 這是物理學概念 "熵 "的一個基本例子。 But again, in this instance...the quantum world is special. 但同樣,在這種情況下......量子世界是特殊的。 In quantum systems we can get that thing called dynamical localization 在量子系統中,我們可以得到那個叫做動態定位的東西。 where a quantum object does NOT heat up with energy input. 其中量子物體不會隨著能量輸入而發熱。 Now, remember: the second law of thermodynamics is classical physics. 現在,請記住:熱力學第二定律是經典物理學。 And because dynamical localization stands in such defiance of this classical law, 而因為動態定位就這樣無視這個經典定律地站在了這裡。 physicists think that taking a closer look at dynamical localization 物理學家們認為,仔細觀察動態本地化 could help us better understand that boundary between the classical and quantum worlds. 可以幫助我們更好地理解經典世界和量子世界之間的那個界限。 Where and why and how does quantum stuff...really start to behave like quantum stuff? 量子的東西......真的開始表現得像量子的東西了,在哪裡,為什麼,怎麼表現? Well, new research is trying to answer just that. 嗯,新的研究正試圖回答這個問題。 Because until now, dynamical localization has only been observed for single quantum objects 因為到目前為止,動態定位只觀察到了單個量子物體的情況 that are exposed to energy that could heat them up. 暴露在可能使其發熱的能量中的。 But a team of researchers has now, for the first time, 但一個研究小組現在,首次。 modeled what they're calling 'many-body dynamical localization. 建立了他們所謂的 "多體動態定位 "模型。 In their model, individual gas particles are interacting with each other 在他們的模型中,各個氣體粒子是相互影響的 and are given a little kick every now and then, which adds energy to the system. 並時不時地被人踢一腳,為系統增加能量。 But the system doesn't heat up past a certain point, even when you keep kicking it. 但是系統過了一定的溫度就不熱了,即使你一直踢它。 Now, compare that to classical mechanics, 現在,把它和經典力學相比。 where particles in the same situation should continue to heat up until infinity if you keep giving them a kick. 其中粒子在相同的情況下應該繼續加熱,直到無窮大,如果你繼續給他們一腳。 This exciting computational modeling work is being followed 這一令人振奮的計算建模工作正在被關注。 by experimental work at the University of California Santa Barbara, 由加州大學聖巴巴拉分校的實驗工作。 where a team is using lasers to confine a quantum gas of lithium ions and then probe their behavior. 其中,一個團隊正在使用脈衝光來限制鋰離子的量子氣體,然後探測它們的行為。 See what they do. 看看他們是怎麼做的。 Preliminary results from this experimental set-up supports the modeling work — 這一實驗裝置的初步結果支持了建模工作------。 despite continued kicking, or addition of energy... 儘管繼續踢,或增加能量... ... the quantum system plateaus in heat. 量子系統的熱度趨於平穩。 Which is totally wild, I kinda can't get over it, it goes against everything I've ever learned in physics class. 這完全是野路子,我有點接受不了,這違背了我在物理課上所學的一切。 Okay, but why is any of this important? 好吧,但為什麼這些都很重要? Well, again—exploring the boundary between the quantum and classical worlds 好吧,再一次探索量子和經典世界的邊界。 could help us understand both of them better, 可以幫助我們更好地理解他們兩個。 and maybe one day help us reconcile more of their discrepancies. 也許有一天會幫助我們調和更多的分歧。 But also, think about it: a system that doesn't continue to heat up, despite continued addition of energy? 但也要想一想:一個系統,雖然繼續添加能量,但卻不會繼續升溫? That sounds like it could be pretty useful when we're designing, say...quantum computers. 這聽起來像是在我們設計量子計算機的時候,比如說......量子計算機的時候,會非常有用。 Which are notorious for being SUPER delicate when it comes to heat. 哪些是出了名的超級嬌貴,在熱的時候。 So, that's just one real-world example of us applying stuff that sounds kinda like magic 所以,這只是一個現實世界的例子,我們應用的東西,聽起來有點像魔法。 to our very tangible problems, both present and future. 解決我們目前和未來的實際問題。 If you want even more wacky wonderful weirdness about quantum tech and heat, 如果你想了解更多關於量子科技和熱能的古怪妙趣。 then check out this video here, 然後在這裡看看這個視頻。 and make sure to subscribe to Seeker to keep up with all your physics news. 並且一定要訂閱Seeker,以瞭解所有的物理學新聞。 If you have another quantum question you want us to cover, leave it for us down in the comments below. 如果你有其他量子問題想讓我們回答,請在下面的評論中給我們留言。 And as always, thanks for watching. I'll see ya next time. 和以往一樣,謝謝你的觀看。下一次我會看到你。
B2 中高級 中文 量子 經典 物體 能量 世界 物理學 科學家探索經典物理學和量子物理學之間的突破點 (Scientists Explore the Breaking Point Between Classical and Quantum Physics) 34 3 Summer 發佈於 2020 年 09 月 16 日 更多分享 分享 收藏 回報 影片單字